期刊文献+

多目标粒子群算法在交叉培训规划中的应用 被引量:5

Multi-objective particle swarm optimization algorithm for cross-training programming
下载PDF
导出
摘要 为了进一步提高人力资源交叉培训规划的实用性,增加了对于员工学习行为的考虑,提出了在保证任务覆盖水平的基础上,获得员工满意度最大和学习效率最高的多目标优化模型.本文针对问题的特征,采用多目标粒子群(MOPSO)算法对多目标优化模型进行了求解,并设计了多种算法策略,以适应不同的问题环境.通过数值实验,分析了不同问题规模下,针对不同性能指标算法参数和策略的适用性.最后,以柔性单元装配生产线为例,进行了数值实验,实验结果表明了模型的有效性和合理性. In order to improve the practicability of a cross-training programming, the factor of human learning behavior is considered. A multi-objective optimization model is presented on the basis of task redundancy policy, in which the objective functions describe the labor satisfaction and the learning efficiency. A cross-training programming based on multi-objective particle swarm optimization algorithm (MOPSO) is proposed. The MOPSO solves for the solutions of the proposed multi-objective optimization model and designs algorithm policies for different problem environments. Several flexible cell assemblies in different scales are presented for modeling the environment in a series of numerical experiments. Results in each environment are analyzed in the ,~spects of diversity, distribution and convergence index. The analyzed results show that the method presented in this paper can solve cross-training programming problems effectively.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第1期17-22,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(70971019) 国家创新研究群体科学基金资助项目(71021061) 中央高校基本科研业务费专项资金资助项目(100404026)
关键词 交叉培训规划 员工满意度 学习效率曲线 多目标粒子群算法 柔性单元装配线 cross-training programming labor satisfaction learning curve multi-objective PSO flexible assembly cells
  • 相关文献

参考文献14

  • 1BOKHORST J, GAALMAN G. Cross-training workers in dual re- source constrained systems with heterogeneous processing times [J]. International Journal of Production Research, 2009, 47(22): 6333 - 6356.
  • 2IRAVANI S M R, KOLFAL B, VAN OYEN M E Call-center labor cross-training: it's a small world after all [J]. Management Science, 2007, 53(7): ll02 - lll2.
  • 3MOLLEMAN E, VAN DEN B A. Worker flexibility and its perceived contribution to performance: the moderating role of task character- istics [J]. Human Factors and Ergonomics in Manufacturing, 2007, 17(2): 117- 135.
  • 4NEMBHARD D A, PRICHANONT K. Cross training in serial pro- duction with process characteristics and operational factors [J]. IEEE Transactions on Engineering Management, 2007, 54(3): 565 - 575.
  • 5EASTON F F. Cross-training performance in flexible labor schedul- ing environments [J]. liE Transactions, 2011, 43(8): 589 - 603.
  • 6李倩,宫俊,唐加福.基于改进NSGA-Ⅱ的交叉培训规划多目标优化[J].东北大学学报(自然科学版),2011,32(12):1696-1699. 被引量:4
  • 7CAMPBELL G M. Cross-utilization of workers whose capabilities differ [J]. Management Science, 1999, 45(5): 722 - 732.
  • 8江友华,廖代发,唐忠.混合有源滤波器多目标优化设计[J].控制理论与应用,2010,27(7):916-922. 被引量:6
  • 9王耀南,许海霞,朱江,袁小芳,周维.平行线段对应的运动估计线性算法[J].控制理论与应用,2011,28(2):166-172. 被引量:1
  • 10HO S L, YANG S Y, NI G Z, et al. A particle swarm optimization- based method for multi-objective design optimizations [J]. IEEE Transactions on Magnetics, 2005, 41(5): 1756 - 1759.

二级参考文献41

  • 1赵曙光,王宇平,焦李成,赵录怀.基于自适应遗传算法的无源电力滤波器综合优化方法[J].中国电机工程学报,2004,24(7):173-176. 被引量:42
  • 2陈峻岭,姜新建,朱东起,邓礼宽.基于遗传算法混合有源滤波器参数的多目标优化[J].清华大学学报(自然科学版),2006,46(1):5-8. 被引量:19
  • 3彭磊,张建平,吴耀武,娄素华.基于GA、PSO结合算法的交直流系统无功优化[J].高电压技术,2006,32(4):78-81. 被引量:23
  • 4袁松贵,吴敏,彭赋,朱豆,杨珏.改进PSO算法用于电力系统无功优化的研究[J].高电压技术,2007,33(7):159-162. 被引量:24
  • 5DARWIN R,LUIS M,JUAN W.Improving passive filter compensation performance with active techniques[J].IEEE Transactions on Industrial Electronics,2003,50(1):161-170.
  • 6EBERBART R,KENNEDY J.A new optimization using particle swarm theory[C] //Proceedings of the 16th International Symposium on Micro Machine and Human Science.Nagoya,Japan:IEEE,1995:39-43.
  • 7KENNEDY J,EBERBART R.Partical swarm optimization[C] //Proceeding of IEEE International Conference on Neural Networks.Perth,Australia:IEEE,1995.
  • 8POLLEFEYS M, NISTER D, FRAHM J, et al. Detailed real time urban 3D reconstruction from video[J]. International Journal of Computer Vision, 2008, 78(2/3): 143 - 167.
  • 9HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. London: Cambridge University Press, 2000.
  • 10HAYET J, LERASLE F, DEVY M. A visual landmark framework for mobile robot navigation[J]. Image and Vision Computing, 2007, 25(4): 1341 - 135.

共引文献8

同被引文献65

引证文献5

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部