期刊文献+

控制系统的脆弱性分析 被引量:3

Fragility analysis for control systems
下载PDF
导出
摘要 脆弱性是指一闭环系统的稳定性对参数摄动极端敏感.这类系统的开环频率特性经过距临界点(1,j0)的近旁,这种与(1,j0)点之间脆弱的相对关系遇到任何可能的摄动就会遭到破坏.文中分析指出,控制系统的脆弱性可以用Bode积分来进行定量分析.对于一个非最小相位的不稳定对象的控制来说,控制器的不稳定极点与对象的不稳定极点加到一起会大大增加系统灵敏度函数的峰值.故这类系统的设计必然是脆弱的.对于不稳定的多变量对象的控制来说,如果其中一个等价的输出反馈回路中有一个较大的不稳定极点,那么其灵敏度函数也会出现大的峰值,会导致脆弱性,而利用Bode积分则可以避免设计的脆弱性. Fragility means that the stability of a closed-loop system is extremely sensitive to parameter perturbations. For these systems, the open-loop frequency response is closely passing by the critical stability point (-1,j0), and the fragile relationship with the point (-1, j0) can easily be violated by any possible perturbation. It is analyzed and pointed out that the fragility of a control system can be quantitatively analyzed by using the Bode integrals. For non-minimum- phase unstable plants, the unstable pole of the controller in addition with the unstable pole of the plant may greatly increase the peak of the sensitivity function. So the resulting design for such systems is unavoidably fragile. For multivariable unstable plants, there may be a rather large unstable pole in an equivalent output feedback loop, which can also cause a large peak of the sensitivity function and results in a fragile design. The Bode integral can also be used to avoid the fragility of the desien.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第1期95-100,共6页 Control Theory & Applications
基金 国家自然科学基金重点资助项目(61034001) 国家自然科学基金资助项目(61174203)
关键词 脆弱性 Bode积分 输出反馈 非最小相位系统 不稳定对象 fragility Bode integral output feedback non-minimum-phase system unstable plant
  • 相关文献

参考文献5

二级参考文献27

  • 1王广雄,王新生.H_∞ two-block design of servo systems[J].Journal of Harbin Institute of Technology(New Series),2002,9(2):142-144. 被引量:4
  • 2汪锐,刘建昌,赵军.一类线性不确定切换时滞系统的可靠保成本控制[J].控制理论与应用,2006,23(6):1001-1004. 被引量:14
  • 3何朕,王毅,周长浩,刘彦文.球-杆系统的非线性问题[J].自动化学报,2007,33(5):550-553. 被引量:12
  • 4高婷婷,张庆灵,包刚.网络控制系统H_∞保成本控制分析[J].信息与控制,2007,36(3):308-314. 被引量:2
  • 5Keel L H, Bhattacharyya S P. Robust, fragile, or optimal? [J]. IEEE Transactions on Automatic Control, 1997, 42 (8) : 1098 - 1105.
  • 6Makila P M. Comments on " robust, fragile, or optimal?"[J] IEEE Transactions on Automatic Control, 1998, 43 (9) : 1265 - 1268.
  • 7Paattilammi J, Makila P M. Fragility and robustness: a ease study on paper machine headbox control [ J ]. IEEE Control Systems Magazine, 2000, 20( 1 ): 13-22.
  • 8DOYLE J C, STEIN G. Multivariable feedback design: concepts for a classical/modem synthesis[ J ]. IEEE Transactions on Automatic Control, 1981, 26( 1 ) : 4 - 16.
  • 9LANZON A, PAPAGEORGIOU G. Distance measures for uncertain linear systems : a general theory [ J ]. IEEE Transactions on Automatic Control, 2009, 54 (7) : 1532 - 1547.
  • 10YANG G H, WANG J L. Non-fragile H∞ control for linear systems with multiplicative controller gain variations[ J]. Automatica, 2001, 37(5) : 727 -737.

共引文献29

同被引文献22

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部