期刊文献+

基于FRFT的改进多尺度线调频基稀疏信号分解方法 被引量:3

Improved multi-scale chirplet sparse signal decomposition method based on Fractional Fourier Transform
下载PDF
导出
摘要 针对全局搜索基函数计算量大的问题,提出了基于分数阶傅里叶变换(Fractional Fourier Transform,FR-FT)确定基函数的改进多尺度线调频基稀疏信号分解方法。通过解析信号的FRFT消除实信号FRFT结果中的对称项,两级搜索FRFT幅度谱确定信号的最佳基函数,检验该方法的计算效率和抗噪性能,并采用该方法分解频率呈曲线变化的多分量非平稳信号。试验结果表明:对解析信号进行FRFT能有效消除实信号FRFT结果中的对称项;基于FRFT确定基函数速度快、精度高、抗噪能力强,与频偏大小、频率变化快慢无关,不需先验知识,有效克服了全局搜索方法计算量过大的问题;基于FRFT的改进多尺度线调频基稀疏信号分解方法能快速、准确地分解频率呈曲线变化的多分量信号,适合于旋转机械瞬变工况下非平稳信号的瞬时频率估计与目标分量隔离分析。 In view of the large computation of the global searching algorithm of basic function, an improved multi-scale chirplet sparse signal decomposition method (IMSCSD) is proposed in which the basic function is ascertained by Fractional Fourier Transform (FRFT). The symmetric items of real signal's FRFT are removed by the FRFT of the analytic signal, and the FR- FT amplitude spectrum is searched by two-step peak searching method to ascertain the best basic function. The efficiency and anti noise performance of the IMSCSD is checked up, and IMSOSD is applied to decompose the non-stationary signal with multi-components whose frequencies change curvedly. The results show that the symmetry items of the FRFT of real signal is removed effectively by the FRFT of corresponding analytic signal; the basic function is ascertained by FRFT rapidly, precisely and robustly without the help of experience, and the method has no relation to frequency offset and frequency changing rate, so the large computation of global searching algorithm is overcome effectively; the signal with multi-components whose frequen- cies change curvedly is decomposed fast and precisely by IMSCSD, so the IMSCSD is very suitable for the evaluation of instantaneous frequencies and separation of targeted component of the non-stationary signal of rotational machine under transient condition.
出处 《振动工程学报》 EI CSCD 北大核心 2013年第1期135-142,共8页 Journal of Vibration Engineering
基金 总后勤部预研资助项目(AS407C001)
关键词 信号处理 分数阶傅里叶变换 多尺度 线调频基函数 稀疏信号分解 signal processing FRFT multi scale chirplet basic function sparse decomposition
  • 相关文献

参考文献11

二级参考文献52

  • 1李靖,王树勋,汪飞.基于分数阶傅里叶变换的chirp信号时频分析[J].系统工程与电子技术,2005,27(6):988-990. 被引量:31
  • 2李辉,郑海起,唐力伟.声测法和经验模态分解在轴承故障诊断中的应用[J].中国电机工程学报,2006,26(15):124-128. 被引量:26
  • 3王太勇,何慧龙,王国锋,冷永刚,胥永刚,李强.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].机械工程学报,2007,43(4):88-92. 被引量:33
  • 4邓兵,陶然,曲长文.分数阶Fourier域中多分量chirp信号的遮蔽分析[J].电子学报,2007,35(6):1094-1098. 被引量:28
  • 5BOZCHALOOI I S, LIANG Ming. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detect ability of bearing fault signals[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 915-933.
  • 6BOZCHALOOI I S, LIANG Ming. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Mechanical Systems and Signal Processing, 2007, 308(1-2): 246-267.
  • 7SHEEN Yuhtay. An analysis method for the vibration signal with amplitude modulation in a bearing system[J]. Journal of Sound and Vibration, 2007, 303(3-5): 538-552.
  • 8SHEEN Yuhtay. An envelope detection method based on the first-vibration-mode of bearing vibration[J]. Measurement, 2008, 41(7): 797-809.
  • 9WANG Jing, XU Guanghua, ZHANG Qing, et al. Application of improved morphological filter to the extraction of impulsive attenuation signals[J]. Mechanical Systems and Simlal Processing, 2009, 23(1~: 236-245_.
  • 10LI Zhen, HE Zhengjia, ZI Yanyang, et al. Customized wavelet denoising using intra- and inter-scale dependency for bearing fault detection[J]. Journal of Sound and Vibration, 2008, 313(1-2): 342-359.

共引文献193

同被引文献19

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部