期刊文献+

主频占优镶边滤波器分解信号为本征模态函数的方法

A method on preferential dominant frequency and mount edge filter decomposing signal into intrinsic mode functions
下载PDF
导出
摘要 针对本征模态函数分解方法FFDSI存在的问题,首先将信号变换到频率域,采用以主频率为始点逐渐向两边扩大频率通过带宽度的方法,寻求一种最宽带通镶边滤波器,使信号经此滤波器滤波后得到的信号为本征模态函数。然后,从原信号减去此模态函数并重复这一过程,便可实现信号的本征模态函数分解。新方法不仅可以有效削弱吉布斯效应,较好地反映信号的瞬时特性,尽可能地降低拆分"拍"信号的机率,而且在分解过程中还同时得到了本征模态函数的解析信号,这为以后计算Hilbert谱提供了很大便利。文中还对风浪信号进行了分解,得到了5个有意义的主要本征模态函数。 For the problems existing in decomposition method of FFDSI, firstly the signal is transformed from time to frequency domain, and then based upon a method, through which the main frequency is taken as the initial point expanding pass band to both sides gradually, the widest pass band mount edge filter is found and then the filtered signal is turn to be the intrinsic mode function. Next, the mode function is subtracted from the raw signal and the above process is repeated, thus, the raw signal is decomposed into a series of intrinsic mode functions. The new method can not only weak the Gibbsr phenomenon effectively, reflect the instantaneous character better, reduce the chance to split "beat" signal as far as possible, but also get the analytical signals of the intrinsic mode functions simultaneously, which will provide a great convenience in later calculation of Hilbert spectrum. In the paper, the new method is used in the wind wave signal decomposition and the five main meaningful intrinsic mode functions are obtained.
出处 《振动工程学报》 EI CSCD 北大核心 2013年第1期143-152,共10页 Journal of Vibration Engineering
基金 教育部博士点基金资助项目(20110132120014)
关键词 信号处理 本征模态函数 希尔伯特-黄变换 吉布斯效应 镶边滤波器 signal processing intrinsic mode function Hilbert-Huang transform Gibbs' phenomenon mount edge filter
  • 相关文献

参考文献13

  • 1Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition method and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R Soc. Land. , 1998, A 454: 903--995.
  • 2Roy A, Chun-Hsien Wen, Doherty J F, et al. Signal feature extraction from microbarograph observations using the Hilhert-Huang transform[J]. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46 (5): 1 442--1 447.
  • 3Caseiro P, Fonseca-Pinto R. Andrade screening of ob- structive sleep apnea using Hilbert-Huang decomposi- tion of oronasal air pressure recordings[J]. Medical Engineering & Physics, 2010, 24:1 025--1 031.
  • 4Tomas Kalvoda,Yean-Ren Hwang. Analysis of signals for monitoring of nonlinear and non-stationary machi- ning processes [J]. Sensors and Actuators, 2010, A 161 : 9--45.
  • 5Zhongyuan Su, Yaoming Zhang, Minping Jia. Gear fault identification and classification of singular value decomposition based on Hilbert-Huang transform[J].Journal of Mechanical Science and Technology, 2011, 25(2): 267-272.
  • 6白大为,底青云,王光杰,李帝铨,程辉.Hilbert-Huang变换与ELF信号处理[J].地球物理学进展,2009,24(3):1032-1038. 被引量:11
  • 7杨光亮,朱元清,于海英.基于HHT的地震信号自动去噪算法[J].大地测量与地球动力学,2010,30(3):39-42. 被引量:12
  • 8于彩霞,魏文博,景建恩,叶高峰,张帆,赵文轲,毛星.希尔伯特-黄变换在海底大地电磁测深数据处理中的应用[J].地球物理学进展,2010(3):1046-1056. 被引量:13
  • 9Rato R T, Ortigueira M D, Batista A G. On the HHT, its problems, and some solutions [J]. Me- chanical Systems and Signal Processing, 2008, 22: 1 374--1 394.
  • 10耿婷婷,金荣洪,耿军平,梁仙灵.HHT的改进及其在时频信号分析中的应用研究[J].中国电子科学研究院学报,2010,5(5):513-517. 被引量:1

二级参考文献84

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部