摘要
采用传感器对振动成型基层材料的塑性变形、振动加速度和压实力进行了采集.通过振动三参数对振动压实工艺输出能量的分析,定义了评价振动压实工艺压实能力的评价参数——激振强度;通过对基层材料振动压实塑性变形曲线的分析,定义了被压材料可压实性评价参数——可压实性系数;对典型道路材料的可压实性进行了对比研究.结果表明,在压实效果的影响上,当激振强度大于3.5时,振动压实工艺才具有较强的压实能力;材料的振动压实塑性变形与振动时间呈对数关系,在振动压实50s后,塑性变形处于稳定状态;在材料可压实性方面,沥青混合料的可压实性最差,二灰结合料可压实性最好,基层材料的可压实性基本处于同一水平.研究结果还表明,用振动压实工艺单位时间内输出的能量和道路材料产生单位塑性变形所需的压实应力,来评价振动工艺的压实能力与被压材料可压实性是合理的.
Road-base materials plastic deformation, vibration acceleration and pressure power was acquisited by adpoting sensors in vibration molding process. Based on the output energy analysis of three parameters vibration compaction process, the vibration compaction ability evaluation parameter, vibration intensity E1, was defined. Based on an analysis of the materials vibration compaction plastic deformation curve, the compaction assessment index of road- base materials compaction, coefficient L, was defined. A comparative study was carried out among different road base materials. The result shows that when the vibration intensity is greater than 3. 5, the vibration compaction process has strong compaction ability. There is a logarithmic relationship between vibration compaction plastic deformation and vibration time, when vibration compaction is over 50 s, plastic deformation is in a stable state. In terms of the compaction ability, asphalt mixture is the worst, the fly ash and lime is the best. The road base materials compaction abilities are basically on the same level. The study results show that with the vibration intensity E1 and compaction coefficient L, the vibration and the road materials compaction ability can be well evaluated.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2013年第2期203-207,共5页
Journal of Tongji University:Natural Science
基金
吉林省交通科技计划(20060406)
关键词
道路工程
振动压实
动态监测
压实能力
可压实性
评价方法
road engineering
vibration compaction
dynamic monitoring
compaction ability
compacted performance
evaluation method