期刊文献+

不假定凸性和精确线搜索时DFP算法的收敛性

Convergence of DFP Algorithms Without Convexity and Exact Line Search Assumptions
下载PDF
导出
摘要 对非凸目标函数,Broyden变尺度算法的收敛性是一个没有完全解决的问题.针对DFP修正公式证明在不假定精确线搜索条件下,对光滑的目标函数,当DFP算法得到的点列收敛时,该点列一定趋向于稳定点.指出对于其他Broyden算法结论都是成立的. The convergence of the Broyden algorithms without convexity and exact line search assumptions is discussed. It is proved that if the objective function is suitably smooth and the DFP algorithm produces a convergence point sequence, then the limit point of the sequence is a critical point of the objective function. We give mainly a proof for the DFP update, then point out that all the results are true for Broyden algorithms by a remark.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期289-292,298,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(10771162 U1135003)
关键词 变尺度算法 收敛性 凸性 不精确线搜索 Broyden algorithms convergence convexity inexact line search
  • 相关文献

参考文献10

  • 1Broyden C G. The convergence of a class of double-rank minimization algorithms [J]. Journal of the Institute of Mathematics and Its Applications, 1970, 6(3):222.
  • 2Powell M J D. On the convergence of the variable metric algorithm [J]. Journal of the Institute of Mathematics and Its Applications, 1971, 7(1) : 21.
  • 3Powell M J D. Some global convergence properties of the variable metric algorithm fur minimization without exact line searchesEM]. NewYork: SIAM Publications, 1987.
  • 4Byrd R H, Nocedal J, Yuan Y. Global convergence of a class of quasi-newton methods on convex problems [J]. SIAM Journal on Numerical Analysis, 1987, 24(5) : 1171.
  • 5Pu D. A class of DFP algorithm without exact linear search [J]. Asia-Pacific Journal of Operation Research, 1992, 9: 207.
  • 6Mascarenhas W. The BFGS method with exact line searches fails for non convex objective functions E J ]- Journal of Mathematical Programming, 2004, 99( 1 ) : 49.
  • 7Pu D, Yu W. On the convergence property of the DFP algorithm [J]. Annals of Operations Research, 1990, 24(1): 175.
  • 8Fletcher R. Practical methods of optimization [M]. New York: John Wiley and Sons, 1987.
  • 9Pu D, Gui S, Tian W. A class of revised Broyden algorithms without exact line search [J 1. Journal of Computational Mathematics, 2004, 22(1):11.
  • 10PowellMJ D. Some properties of the variable metric algorithm[C]//Numerical Methods for Nonlinear Optimization, London: Academic Press, 1972: 1-17.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部