期刊文献+

滑移边界条件的收敛性分析及应用 被引量:4

Convergence analysis and application of the slip boundary conditions
下载PDF
导出
摘要 用速度滑移与温度跳跃边界条件代替通常假定的无滑移边界条件,可有效地提高计算流体力学模型对高空滑移流区域流动的预测精度。应用Maxwell滑移边界条件时,通过直接计算速度梯度及温度梯度而得到速度滑移和温度跳跃量的处理方法在网格较密的时候会出现迭代计算发散的问题。理论分析表明,直接计算梯度的方法使边界条件的时间推进过程等价于雅克比迭代过程,因此必须满足相应的收敛性条件。为了消除收敛性条件的限制,给出了一种在任意网格密度下均收敛的边界条件处理方法并通过数值算例验证了该方法的正确性。针对高空高超声速流动,以空天飞机为例,对比了滑移/无滑移边界条件所得结果的差异,分析了滑移效应对飞行器气动特性及热环境的影响。 By replacing the typical no-slip boundary conditions with velocity slip and temperature jump boundary conditions, the predicting accuracy of the CFD modeling is improved effectively for high altitudes flow in the slip regime. The numerical iterations usually suffer form divergence when the Maxwell slip boundary conditions are implemented with very great number of grid points by the numerical method, which the velocity slip and temperature jump are evaluated through explicit calculation of the velocity and temperature gradient terms. In the theoretical analysis, it is shown that the explicit calculation of gradient terms displays the time advancement process of the Maxwell slip boundary conditions similar to a Jacobian iteration scheme, hence it must satisfy the condition of convergence. In order to remove the limitation from the condition of convergence, a numerical treatment which is convergent for arbitrary grid density was derived for the slip boundary conditions. Numerical tests were calculated to demonstrate the validity of the derived method. A space shuttle model was studied numerically for hypersonic flow at high altitudes. The results disagreement between the slip and no-slip conditions was compared and the influence of slip effects on vehicle aerodynamic characteristics and aerothermodynamic properties was analyzed.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第1期12-18,共7页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(91016010)
关键词 滑移边界条件 收敛性 高超声速 计算流体力学 slip boundary conditions convergence hypersonic computational fluid dynamics
  • 相关文献

参考文献13

  • 1叶友达.近空间高速飞行器气动特性研究与布局设计优化[J].力学进展,2009,39(6):683-694. 被引量:64
  • 2Nie X B, Chen S Y, et al. A continuum and molecular dynamics hybrid method for micro-and-nano-fluid flow [ J ]. J. Fluid Mech ,2004 ( 1 ).
  • 3Manrer J, Tabeling P, et al. Second-order slip laws in microchannels for helium and nitrogen [ J ]. Physics of Fluids, 2003,15:2613 - 2621.
  • 4谢翀,樊菁.Navier-Stokes方程二阶速度滑移边界条件的检验[J].力学学报,2007,39(1):1-6. 被引量:19
  • 5Bird G A. Gas Dynamics and the direct simulation of gas flows [ M]. Oxford University Press, Oxford, 1994.
  • 6张涵信,沈孟育.计算流体力学差分方法的原理与应用[M].北京:国防工业出版社,2003.
  • 7Kim K H, Kim C. Accurate efficient and monotonic numerical methods for multi-dimensional compressible flows part I : spatial discretization [ J ]. Journal of Computational Physics, 2005, 208.
  • 8Michael J W, Graham V. C, et al. Data-parallel lower-upper relaxation method for the navier-stokes equations [ J ]. AIAA Journal , 1996,34 ( 1 ) :1371 - 1377.
  • 9Maxwell J C. On stresses in rarefied gases arising from inequalities of temperature[ J ]. Philosophical Transactions of The Royal Society, 1879, 2 ( 1 ).
  • 10Gokcen T, MacCormack R W. Nonequilibrium effects for hypersonic transitional flows using continuum approach [ R ]. AIAA Paper 1989 -0461, 1989.

二级参考文献117

  • 1蔡宣三.最优化与最优控制[M].北京:清华大学出版社,1983..
  • 2Anderson W K, Bonhaus D L. Airfoil design on unstructured grids for turbulent flows. AIAA Journal, 1999, 37(2).
  • 3Labrujere T E, Slooff J L. Computational methods for the aerodynamic design of aircraft components. Annu. Rev. Mech., 1993, 25:183-214.
  • 4Lighthill M J. A new method of two dimensional aerodynamic design. In: R & M 1111, Aeronautical Research Council, 1945.
  • 5Labruere T E, Slooff J L. Computational methods for the aerodynamic design of aircraft components. Annu. Rev. Mech., 1993, 25:183-214.
  • 6Huffman W P, Melvin R G, Young D P, et al. Practical design and optimization in computational fluid dynamics. AIAA Paper 93-3111, 1993.
  • 7Melvin R G, Huffman W P, et al. Recent progress in aerodynamic design optimization. Int J Numer Meth Fluids, 1999, 30:205-216.
  • 8Murman E M, Chapman G T. Aerodynamic design using numerical optimization. NASA-TM-85550, 1983.
  • 9Catalano L A, Dadone A. Progressive optimization for the inverse design of 2D cascades. AIAA Paper 2000-3204, 2000.
  • 10Oyama O, Obayashi S, et al. Fractional factorial design of genetic coding for aerodynamic optimization. AIAA Paper 99-3298, 1999.

共引文献82

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部