期刊文献+

低信噪比下融合随机共振的运动目标检测算法 被引量:2

An algorithm improving objects detection for low-quality video using stochastic resonance
下载PDF
导出
摘要 为提高智能视频监控系统中运动目标检测算法在低信噪比条件下的鲁棒性,结合混合高斯背景建模算法和随机共振原理实现一种低信噪比下的运动目标检测算法。算法根据混合高斯背景模型对当前帧生成目标概率灰度图,在本文定义的性能评价函数下,通过向该概率灰度图添加噪声使得评价函数最优化从而达到随机共振,对该随机共振灰度图进行阈值分割得到输出的检测目标。针对昏暗、大雾和红外视频分别进行了实验,证实了本文算法的有效性同时也显示本文算法相对于普通背景差算法性能获得了明显提升。 Video object extraction is a key technology in intelligence surveillance. An object detection algorithm for low- quality video based on Gaussian Mix Model and stochastic resonance was proposed. Firstly, the algorithm generated the object probability gray image from the current frame with the Gaussian Mix Model by the mapping function defined. Then, stochastic resonance was applied to the object probability gray image by adding noise until the defined evaluation function achieved the minimum value. After stochastic resonance, an effectively enhanced object probability gray image could be obtained. Hence the binary image including the interested objects is retrieved by segmentation of the enhanced object probability gray image. The experimental results show that the proposed algorithm combining the Gaussian Mix Model and the stochastic resonance achieved satisfactory subjective and objective performance under the worse environment with dark, foggy and infrared imaging while the classic background subtraction method almost could not detect the interested objects.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第1期103-107,共5页 Journal of National University of Defense Technology
关键词 目标检测 混合高斯 目标概率灰度图 随机共振 object detection Gaussian mixture model object probability gray image stochastic resonance
  • 相关文献

参考文献9

二级参考文献71

  • 1冷永刚,王太勇,郭焱,范胜波,王永强.基于双稳类随机共振的信息检测[J].电子与信息学报,2005,27(5):734-739. 被引量:17
  • 2石俊生,金伟其,王岭雪.视觉评价夜视彩色融合图像质量的实验研究[J].红外与毫米波学报,2005,24(3):236-240. 被引量:20
  • 3王岭雪,金伟其,石俊生,王生祥,王霞.基于拮抗视觉特性的多波段彩色夜视融合方法研究[J].红外与毫米波学报,2006,25(6):455-459. 被引量:13
  • 4刘盛鹏,方勇.基于Contourlet变换和IPCNN的融合算法及其在可见光与红外线图像融合中的应用[J].红外与毫米波学报,2007,26(3):217-221. 被引量:34
  • 5Lazzaro D, Montefusco L B. Edge-preserving wavelet thresholding for image denoising [ J ] . Journal of Computational and Applied Mathematics, 2007,210 ( 1-2 ) : 222 -231.
  • 6Wu Ya-dong, Zhu Qing-xin, Sun Shi-xi, et al. Image restoration using variational PDE-based neural network [ J ]. Neurocomputing, 2006,69 ( 16-18 ) :2364-2368.
  • 7Yu Yu-guo, Wang Wei, Liu Feng, et al. Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems [J]. Physics Review E, 2001, 63(2) :1907-1919.
  • 8Jha Rajib Kumar, Biswas P K, Chatterji B N. Image denoising using stochastic resonance [ A ] . In: Proceedings of the International Conference on Cognition and Recognition ( ICCR'05 ) [ C ] , Mysore, India, 2005: 343-348.
  • 9Piana M, Canfora M, Riani M. Role of noise in image processing by human perceptive system [ J ] . Physics Review E, 2000,62 ( 1 ) : 1104-1109.
  • 10Stocks N. Suprathreshold stochastic resonance in multilevel threshold systems[ J]. Physics Review Letter, 2000, 84(11 ) :2310-2313.

共引文献30

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部