期刊文献+

用户集聚系数对协同过滤算法的影响研究 被引量:2

Effect of User Clustering Coefficient on Collaborative Filtering Recommender Systems
下载PDF
导出
摘要 本文研究了用户-产品二部分网络中用户集聚系数对协同过滤算法的影响。用户集聚系数是度量目标用户的所有邻居用户的特点或者兴趣爱好相同程度的一个统计量,文章将其引入协同过滤算法的相似性计算中,并提出一种改进的算法。数值模拟显示,引入用户集聚系数统计属性的改进算法相比于CF准确性可以提高12.0%,当推荐列表的长度为50时推荐列表多样性可以达到0.649,相比于经典的CF算法提高18.2%。该工作表明用户集聚系数对推荐算法具有非常大的影响,体现了个性化推荐以用户兴趣的度量为核心的基本思想。 In the paper, the effect of user clustering coefficient in the user-object bipartite on collaborative filtering(CF) is considered. User clustering coefficient is a statistical property to evaluate the similarity of all the neighbor users' interests and characteristics of the target users, which is introduced to the similarity of CF to propose an improved algorithm. The numerical results indicate that, the improved algorithmic accuracy, measured by the average ranking score, can be improved by 12.0% , and correspondingly, the diversity could be improved by 18.2% and reach 0. 649 in the optimal case when the recommendation list equals to 50. Furthermore, this work highlights the effect of user clustering coefficient on CF recommender systems, which reflects the core of personalized recommendation is to estimate the users tastes more reasonably.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2013年第1期88-92,共5页 Operations Research and Management Science
基金 国家自然科学基金资助项目(10905052 70901010 71071098 71171136) 上海市科研创新基金(11ZZ135 11YZ110) 上海市智能信息处理重点实验室开放基金(IIPL-2010-006) 上海市系统分析与集成重点学科(S30501) 上海市青年科技启明星计划(A类)(11QA1404500)
关键词 管理科学与工程 个性化推荐 协同过滤算法 用户集聚系数 management science and engineering personalized recommendation Collaborative filtering user clustering coefficient
  • 相关文献

参考文献14

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems-a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17: 734-745.
  • 2Liu J G, Chen M Z Q, Chen J, et al.. Recent advances in personal recommendation systems[ J]. International Journal for Information & Systems Sciences, 2009, 5 (2) : 230-247.
  • 3刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 4Zhou T, Ren J, Medo M, et al.. Bipartite network projection and personal recommendation[ J]. Physical Review E, 2007, 76: 046115.
  • 5Liu J G, Zhou T, Che H, et al.. Effects of high-order correlations on personalized recommendations for bipartite networks [J]. PhysicaA, 2010, 389: 881-886.
  • 6Herloeker J L, Konstan J A, Terveen K, et al.. Evaluating collaborative filtering recommender systems[ J]. ACM Transac- tions on Information Systems, 2004, 22: 5-53.
  • 7Konstan J A, Miller B N, M altz D, et al.. GroupLens: applying collaborative filtering to Usenet news[ J]. Communications of the ACM, 1997, 40: 77-87.
  • 8Balabanovic M, Shoham Y. Fab: Content-based, collaborative recommendation[ J]. Communications of the ACM, 1997, 40 : 66-72.
  • 9Pazzani M J. A framework for collaborative, content-based, and demographic filtering[ J]. Artificial Intelligence Review, 1999, 13: 393-408.
  • 10Liu J G, Wang B H, Guo Q. Improved collaborative filtering algorithm via information transformation[ J]. International Jour- nal of Modern Physics C, 2009, 20 : 285-293.

二级参考文献134

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献528

同被引文献24

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部