摘要
对物联网海量多维信息按需采集的决策问题进行研究,将该问题转换为网络子网构造问题并建立整数非线性多目标优化模型。针对特定事件,根据物联网布局和节点传感器配置,确定采集的节点、每个节点上传数据的传感器类型以及上传数据的时间间隔,利用遗传算法对其进行多目标最优化求解,以均衡采集后所需传输的数据流量和节点信息量。通过仿真实例验证了该模型及其求解方法的正确性与有效性。
This paper studies on-demand acquisition decision problem for mass multi-dimensional information in Intemet of Things(IOTs). It converts this problem to the network subnet construct issues and establishes an integer nonlinear multi-objective optimization model. For specific event, according to the deployment and configuration of sensors, determine collection of nodes, each node in the data upload sensor types as well as the data upload time interval. It uses genetic algorithms to solve multi-objective optimization, and balances data flow and the amount of information transmission requirements after collection. The results of simulation case prove the correctness and validity of the model and its solution.
出处
《计算机工程》
CAS
CSCD
2013年第3期111-117,共7页
Computer Engineering
基金
国家自然科学基金资助项目(71171129)
上海市科委科研计划基金资助项目(10190502500
11510501900)
上海市教委科研计划基金资助项目(11YZ137
11CXY47)
关键词
物联网
信息采集
决策算法
传感器网络
多目标优化
Internet of Things(IOTs)
information acquisition
decision algorithm
sensor network
multi-objective' optimization