期刊文献+

基于门限的组密钥管理方案 被引量:1

Group Key Management Scheme Based on Threshold
下载PDF
导出
摘要 在动态门限密码共享方案的基础上,将Shamir门限密码体制应用到组播加密过程中,提出一种基于门限的组密钥管理方案GKMT。当有组播用户加入或退出组播组时,无需重新分发组密钥,从而提高方案执行效率。引入分层控制的思想,对GKMT方案进行改进,得到LGKMT方案。性能分析结果表明,GKMT和LGKMT方案在通信开销方面优于现有组密钥管理方案,适用于组成员状态经常发生变化的组通信网络。 This paper proposes a Group Key Management Scheme Based on Threshold(GKMT). The idea of dynamic threshold secret sharing scheme to encrypt multicast streams is used in GKMT. When a user wants to join or leave a multicast group, it is need not to redistribute group key. It can greatly enhance the effectiveness of the scheme. Meanwhile, to enhance the scalability of the scheme, the original scheme is improved to LGKMT using the hierarchical control. Performance analysis result shows that GKMT and LGKMT schemes are superior to existing group key management scheme on key communication cost, suitable for the group communication network which group state often changes.
出处 《计算机工程》 CAS CSCD 2013年第3期167-173,共7页 Computer Engineering
基金 国家"973"计划基金资助项目(2012CB315901) 国家科技支撑计划基金资助项目(2008BAH37B03)
关键词 安全组播 门限 秘密共享 组密钥管理 分层控制 冗余控制 secure multicast threshold secret sharing group key management hierarchical control redundant control
  • 相关文献

参考文献11

  • 1Wallner D, Harder E, Agee R. Key Management for Multicast: Issues and Architectures[S]. RFC 2627, 1999.
  • 2Kim Y, Perrg A, Tsudik G. Tree-based Group Key Agreement[J]. ACM Transactions on Information and System Security, 2004, 7(1): 60-96.
  • 3Lee Jun-Sik, Son Ju-Hyung, Park Young-Hoon, et al. Optimal Level Homogeneous Tree Structure for Logical Key Hierarchy[C]//Proc. of the 3rd IEEE/Create-Net International Conference on Communication System Software and Middleware. [S. 1.]: IEEE Press, 2007: 677-681.
  • 4Rafaeli S. A Decentralized Architecture for Group Key Management[D]. Lancaster, UK: Lancaster University, 2000.
  • 5Sun Yan, Ammar M. Scalable Hierarchical Access Control in Secure Group Communications[C]//Proc. of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies. [S. 1.]: IEEE Press, 2004.
  • 6Steiner M, Tsudik G, Waidner M. Diffie-Hellman Key Distribution Extended to Group Communication[C]//Proc. of the 3rd ACM Conference on Computer and Communi- cations Security. [S. 1.]: ACM Press, 1996: 31-37.
  • 7Steiner M, Tsudik G, Waidner M. Key Agreement in Dynamic Peer Groups[J]. IEEE Transactions on Parallel and Distributed Systems, 2000, 11(8): 769-780.
  • 8Shamir A. How to Share a Secret[J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 9郭鑫,陈克非.求解本原多项式的快速算法[J].计算机工程,2008,34(15):146-147. 被引量:7
  • 10黄德双,池哲儒.基于神经网络的递推分块方法求任意高阶多项式的根[J].中国科学(E辑),2003,33(12):1115-1124. 被引量:12

二级参考文献26

  • 1[1]William H P, Saul A T, William T V, et al. Numerical Recipes in Fortran, 2nd ed. New York: Cambridge Univ Press, 1992
  • 2[2]Lang M, Frenzel B C. Polynomial root finding. IEEE Signal Processing Letters, 1994, 1(10): 141~143
  • 3[3]Van Oorschot P C, Vanstone S A. A geometric approach to root finding in GF(qm). IEEE Trans Information Theory, 1989, 35(2): 444~453
  • 4[4]Aliphas A, Narayan S S, Peterson A M. Finding the zeros of linear phase FIR frequency sampling filters. IEEE Trans Acoust, Speech Signal Processing, 1983, 31: 729~734
  • 5[5]Schmidt C E, Rabiner L R. A study of techniques for finding the zeros of linear phase FIR digital filters. IEEE Trans Acoust, Speech Signal Processing, 1977, 25: 96~98
  • 6[6]Steiglitz K, Dickinson B. Phase unwrapping by factorization. IEEE Trans Acoust, Speech Signal Processing, 1982, 30: 984~991
  • 7[7]Baldi P F, Hornik K. Learning in linear neural networks: A survey. IEEE Trans on Neural Networks, 1995, 6(4): 837~858
  • 8[8]Huang D S. Systemic Theory of Neural Networks for Pattern Recognition. Publishing House of Electronics Industry, 1996
  • 9[9]Huang D S. Linear feedforward neural network classifiers and reduced-rank approximation. In: 1998 4th ICSP Proceedings. Beijing: Publishing House of Electronics Industry, 1998. 1331~1334
  • 10[10]Hertz J, Krogh A, Palmer R G. Introduction to the theory of neural computation. Reading, MA: Addison-Wesley, 1991

共引文献37

同被引文献12

  • 1Shamir A. How to Share a Secret [ J ]. Communications of the ACM,1979,22( ll ) :612-613.
  • 2Blakley G. Safeguarding Cryptographic Keys [ C ]//Pro- ceedings of AFIPS National Computer Conference. New York, USA : AFIPS Press, 1979 : 313-317.
  • 3Mignotte M. How to Share a Secret E C ]//Proceedings of Workshop on Cryptography. Berlin, Germany: Springer-Verlag, 1983 : 371-375.
  • 4Asmuth C A, Bloom J. A Modular Approach to Key Safeguarding [ J ]. IEEE Transactions on Information Theory, 1983,29 (2) :208-210.
  • 5Karnin E D, Greene J W, Hellman M E. On Sharing Secret Systems[ J ]. IEEE Transactions on Information Theory, 1983,29 ( 1 ) :35-41.
  • 6Bertilsson M, lngemrsson I. A Construction of Practical Secret Sharing Schemes Using Linear Block Codes : C l// Proceedings of AUSCRYPT' 92. Berlin, Germany : Springer- Verlag, 1992:67-79.
  • 7史开泉.P-集合[J].山东大学学报(理学版),2008,43(11):77-84. 被引量:218
  • 8刘木兰,周展飞.循环群上理想同态密钥共享体制[J].中国科学(E辑),1998,28(6):524-533. 被引量:3
  • 9王锋,谷利泽,郑世慧,杨义先,胡正名.可验证的多策略秘密共享方案[J].北京邮电大学学报,2010,33(6):72-75. 被引量:2
  • 10王锋,周由胜,谷利泽,杨义先.一个群组验证的多策略门限数字签名方案[J].计算机研究与发展,2012,49(3):499-505. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部