期刊文献+

基于K-way谱聚类的背景离群点检测 被引量:1

Background Outlier Detection Based on K-way Spectral Clustering
下载PDF
导出
摘要 为提高现有背景离群点检测算法背景子图划分的准确性,提出一种基于K-way谱聚类的背景离群点检测算法。构造图模型,对其进行K-way划分,使得到的背景子图具有解释性意义,从划分后的背景子图中获得离群点。实验结果表明,该算法的H指标提高50%,VI指标降低70%,其精确度有较大提高,且没有对图的结构进行改变,不会丢失重要信息。 In order to improve the background subgraph classification accuracy of existing background outlier detection algorithm, this paper proposes a background outlier detection algorithm based on K-way spectral clustering. This paper establishes the diagram model, does the K-way partition to make it have explanatory significance for background subgraph, and gets the outliers from the background subgraph. Experimental results show that the accuracy of this algorithm is improved by 50% at H index and is reduced by 70% at VI index. There is no change with the structure of graph. So it cannot produce the problem of losting important information.
出处 《计算机工程》 CAS CSCD 2013年第3期197-202,208,共7页 Computer Engineering
基金 国家自然科学基金资助项目(60773049) 江苏省科技型中小企业技术创新基金资助项目(BC2010172) 高等学校博士学科点专项科研基金资助项目(20093227110005) 江苏大学高级专业人才科研启动基金资助项目(09JDG041)
关键词 K-way谱聚类 二分法 背景离群点 随机游走 背景子图 图划分因子 K-way spectral clustering dichotomy background outlier random walk background subgraph graph partition factor
  • 相关文献

参考文献9

  • 1薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 2Han Jiawei, Micheline K, Pei Jian. Data Mining: Concepts and Techniques[M]. [S. 1.]: Morgan Kaufmann Publishers, 2011.
  • 3Qu Huiming, Chakrabarti D, Faloutsos C, et al. Neigh- borhood Formation and Anomaly Detection in Bipartite Graphs[C]//Proc. of the 5th IEEE International Conference on Data Mining. Washington D. C., USA: [s. n.], 2005.
  • 4Wang Xiang, Davidson I. Discovering Contexts and Con- textual Outliers Using Random Walks in Graphs[C]//Proc. of the 9th IEEE International Conference. [S. 1.]: IEEE Press, 2009.
  • 5Moonesinghe H D K, Tan Pangning. Outlier Detection Using Random Walks[C]//Proc. of the 18th IEEE Inter- national Conference on Tools with Artificial Intelligence. Washington D. C., USA: IEEE Computer Society, 2006.
  • 6蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:188
  • 7Shi Jianbo, Malik J. Normalized Cuts and Image Seg- mentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8 ). 888-905.
  • 8Marina M. Comparing Clustering by the Variation of Information[C]//Proc. of the 16th Annual Conference of Computational Learning Theory. [S. l.]: Springer, 2003.
  • 9Panzarasa K M. Patterns and Dynamics of Users' Behavior and Interaction: Network Analysis of an Online Community[EB/OL]. (2010-11-21). http://www.casos,cs. cmu.edu/computational_tools/datasets/extemal/karate/index 11 .php.

二级参考文献41

  • 1Han Jia-Wei,Kamber Micheline Data Mining:Concepts and Techniques (2nd Edition).San Francisco:Morgan Kaufmann Publishers,2006
  • 2Hawkins D.Identification of Outliers.London:Chapman and Hall,1980
  • 3Knorr E,Ng R.Algorithms for mining distance-based outliers in large datasets//Proceedings of the 24th VLDB Conference.New York,1998:392-403
  • 4Breunig M M,Kriegel H P,Ng R T et al.OPTICS-OF:Identifying local outliers//Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases.Prague,1999:262-270
  • 5Breunig M,Knegel H P,Ng R et al.LOF:Identifying density-based local outliers//Proceedings of ACM SIGMOD Conference.Dallas,Texas,2000:93-104
  • 6Tang J,Chen Z,Fu A et al.Enhancing effectiveness of outlier detections for low-density patterns//Proceeding of Advances in Knowledge Discovery and Data Mining 6th PacificAsia Conference.Taipei,China,2002:535-548
  • 7Papadimitirou S,Kitagawa H,Gibbons PB,Faloutsos C.LOCI:Fast outlier detection using the local correlation integral//Proceedings of the 19th International Conference on Data Engineering.Bangalore,2003.Los Alamitos:IEEE Computer Society,2003:315-326
  • 8Chawla Sanjay,Sun Pei.SLOM:A new measure for local spatial outliers.Knowledge and Information Systems,2006,9(4):412-429
  • 9Shekhar S,Chawla S.A Tour of Spaual Databases.Upper Saddle River,N.J.:Prentice Hall,2003
  • 10Lu Chang-Tien,Chen De-Chang,Kou Yu-Feng.Detecting spatial outliers with multiple attributes//Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'03).Sacramento,2003:122-128

共引文献281

同被引文献14

  • 1Bedford A.The Unofficial LEGOBuilder’s Guide[M].San Francisco,USA:No Starch Press,2012.
  • 2Doyle M.Beautiful LEGO[M].San Francisco,USA:No Starch Press,2013.
  • 3Yan X,Gu P.AReview of Rapid Prototyping Technologies and Systems[J].Computer-aided Design,1996,28(4):307-318.
  • 4Gower R,Heydtmann A,Petersen H.LEGO:Automated Model Construction[Z].European Study Group,1998.
  • 5Smal E.Automated Brick Sculpture Donstruction[D].Stellenbosch,South Africa:Stellenbosch University,2008.
  • 6Petrovic P.Solving LEGO Brick Layout Problem Using Evolutionary Algorithms[C]//Proceedings of Computer Science Conference.Oslo,Norway:[s.n.],2001:222-234.
  • 7Winkler D.Automated Brick Layout[C]//Proceedings of Brick Fest’05.Washington D.C.,USA:IEEE Press,2005:145-166.
  • 8van Zijl L,Smal E.Cellular Automata with Cell Clustering[C]//Proceedings of Automata Theory and Applications of Cellular Automata Conference.Washington D.C.,USA:IEEE Press,2008:425-441.
  • 9Testuz R,Schwartzburg Y,Pauly M.Automatic Generation of Constructable Brick Sculptures[C]//Proceedings of Eurographics Conference.Stockholm,Sweden:[s.n.],2013:81-84.
  • 10Karypis G,Kumar V.Hmetis:A Hypergraph Partitioning Package[Z].User Manual,1998.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部