期刊文献+

组合分布估计和差分进化的多目标优化算法 被引量:7

Multi-objective optimization algorithm composed of estimation of distribution and differential evolution
下载PDF
导出
摘要 为了提高多目标优化算法的收敛能力及求解精度,提出了一种组合分布估计和差分进化的多目标优化算法.该方法用分布估计算法和差分进化算法共同生成种群中的粒子,利用选择因子来控制每个粒子的产生方式,并且根据迭代次数的增加来改变2种算法的使用比例,搜索初期利用分布估计算法进行快速定位,然后用差分进化算法进行精确搜索.并对差分进化算法的变异因子进行了改进,定义了一个可变的变异因子,来控制不同搜索时期中差分进化算法的变异范围.用4个测试函数对算法进行了仿真测试,并同NSGA-Ⅱ和RM-MEDA进行了比较.实验结果表明,该算法具有良好的收敛性和分布性,并且效果稳定. In order to improve the ability of convergence and accuracy of a multi-objective optimization algorithm, a multi-objective optimization algorithm composed of estimation of distribution and differential evolution has been pro-posed. Both estimation of distribution algorithm and differential evolution algorithm will be used to generate parti- cles of population. The generation method of each particle has been decided by using a selective factor, and propor- tion of the use of two algorithms according to the frequency of iterations. Utilizing an estimation of distribution algo- rithm to quickly locate in the initial search, and then differential evolution algorithm was used for accurately con- ducting searches. The variation factor of differential evolution algorithm was improved, and a variable variation fac- tor also was defined and used to control the range of variation of differential evolution algorithm in different search periods. Four test functions were used to evaluate the performance of the proposed algorithm, and next the proposed algorithm was compared with nondominated sorting genetic algorithm II (NSGA-II) and regularity model-based mul- tiobjective estimation of distribution algorithm (RM-MEDA). The experimental results show that the proposed algo- rithm displayed a good convergence, diversity performance, and the stable effects.
出处 《智能系统学报》 CSCD 北大核心 2013年第1期39-45,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61074076) 中国博士后科学基金资助项目(20090450119) 中国博士点新教师基金资助项目(20092304120017)
关键词 多目标优化 分布估计算法 差分进化算法 multi-objective optimization estimation of distribution algorithm differential evolution algorithm
  • 相关文献

参考文献15

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 2KHAN N, GOLDBERG D E, PELIKAN M. Multi-objective Bayesian optimization algorithm [ R ]. Urbana, USA : Uni- versity of Illinois at Urbana-Champaign, 2002.
  • 3OKABE T, JIN Y, SENDHOFF B, et al. Voronoi-based es- timation of distribution algorithm for multi-objective optimi- zation [ C ]//Proceedings of the 2004 Congress on Evolution- ary Computation. Piscataway, USA, 2004: 1594-1601.
  • 4SASTRY K, PELIKAN M, GOLDBERG D E. Decompos- able problems, niching, and scalability of muhiobjective es- timation of distribution algorithms[ R]. Urbana, USA : Uni- versity of Illinois at Urbana-Champaign, 2005.
  • 5ZHANG Qingfu, ZHOU Aimin, JIN Yaochu. RM-MEDA : a regularity model-based multiobjective estimation of distribu- tion algorithm[ J]. IEEE Transactions on Evolutionary Com- putation, 2008, 12( 1 ) : 41-63.
  • 6程玉虎,王雪松,郝名林.一种多样性保持的分布估计算法[J].电子学报,2010,38(3):591-597. 被引量:15
  • 7STORN R, PRICE K. Differential evolution--a simple and efficien! adaptive scheme for global optimization over contin- uous spaces[ J ]. Journal of Global Optimization, 1997, 11 (4) : 341-359.
  • 8ROBIC T, FILIPIC B. DEMO: differential evolution for multiobjective optimization[ C ]//Proceedings of the 3rd In- ternational Conference on Evolutionary Multi-Criterion Opti- mization. Berlin, Germany: Springer, 2005: 520-533.
  • 9牛大鹏,王福利,何大阔,贾明兴.多目标混沌差分进化算法[J].控制与决策,2009,24(3):361-364. 被引量:28
  • 10ZHAO Mengling, LIU Ruochen, l,I Wenfeng, et al. Multi-ojective optimization based differential evolution constrained optimization algorithm [ C ]//Proceedings of 2010 Second WRI Global Congress on Intelligent Sys- tems. Piseataway, USA, 2010: 320-326.

二级参考文献125

共引文献251

同被引文献62

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部