期刊文献+

快速避障三维最优轨迹规划研究 被引量:3

Fast and Optimal Three Dimensional Trajectory Planning with Obstacle Avoidance Performance
下载PDF
导出
摘要 针对无人作战飞机自主化任务需求,提出了一种"人在回路上"的UCAV自主任务规划解决方案;针对该方案中的UCAV快速自主轨迹规划需求,提出了基于高斯伪谱法的快速轨迹规划解决方案。该方案在充分考虑UCAV的气动力特性、发动机推力特性及大气环境特性的基础上建立了高精度的UCAV模型,详细分析并构建了比较真实的UCAV飞行包线约束模型和三维战场环境约束条件,在此基础上,构建了基于最优控制理论框架的UCAV轨迹规划模型;最后,详细分析并实现了采用GAUSS伪谱法求解该问题的实现过程。仿真结果表明,该方法能以较高的精度和速度生成满足各种复杂约束要求,连续并且真实可行的最优轨迹。 A "man-in-the-loop" task planning strategy was proposed to satisfy the growing autonomous need for Unmanned Combat Aircraft Vehicles (UCAVs). A fast trajectory planning scheme was put forward based on Gauss Pseudospectral Method (GPM) considering the requirement of UCAVs. In the scheme, the UCAV aerodynamic characteristics, the thrust characteristics and the influence of atmosphere environments were taken into consideration, based on which a UCAV model with high accuracy was built up. A trajectory planning model was built up based on optimal control theory and analysis to various complicate constraints such as the UCAV flight envelop in real environment and three dimensional obstacle battlefields. Finally, the basic principle of using GPM to solve the o analyzed. Simulation results show that GPM ptimal control problem for UCAV trajectory planning was can generate a continuous, viable and optimal trajectory satisfying various complicated constraints.
出处 《电光与控制》 北大核心 2013年第3期1-5,共5页 Electronics Optics & Control
基金 航空科学基金(20105196016)
关键词 无人作战飞机 三维最优轨迹规划 飞行包线 高斯伪谱法 Unmanned Combat Aircraft Vehicle (UCAV) 3D optimal trajectory planning flight envelop Gauss Pseudospectral Method (GPM)
  • 相关文献

参考文献12

  • 1Office of the Secretary of Defense. Unmanned systems road-map 2007-2032 [ R]. DoD, Washington DC ,2007.
  • 2ANUSHA M, PADHT R. Evolving philosophies on autonomousobstacle/collision avoidance of unmanned aerial vehicles [J].Journal of aerospace confuting, information, and coimmmica-tion, 2011,8(2):17- 41.
  • 3RICHARDS N D,SHARMA M,WARD D G. A hybrid astar automation approach to on-line path planning with ob-stacle avoidance[ C]//Chicago:Intelligent Systems Tech-nical Conference, 2004 : 1-17.
  • 4SEAN Q M, JACK W L. Dynamically sized occupancy gridsfor obstacle avoidance [ C ] //Toronto : AIAA Guidance, Navi-gation, and Control Conference, 2010 : AIAA-2010-7848.
  • 5JUNG L F, KALTVARAPU J, OLIVER V J, et al. Path plan-ning of unmanned aerial vehicles using B-splines and particleswarm optimization [ J ]. Journal of aerospace conputing, in-formation, and communication 2009,6(4) :271-290.
  • 6GONG Qi, LEWIS L R,ROSS I M. Pseudospectral motionplanning for autonomous vehicles [ J ]. Journal of Guid-ance, Control and Dynamics, 2009,32(3) : 1039-1045.
  • 7RAO A V. A survey of numerical methods for optimal con-trol [J ]. Advances in the Astronautical Sciences,2009,135(1) :497-528.
  • 8BENSON D A, HUNTINGTON G T, THORVALDSEN T P, etal. Direct trajectory optimization and costate estimation viaan orthogonal collocation method [ J ] ? Journal of Guidance,Control, and Dynamics, 2006,29(6) : 1435-1440.
  • 9HUNTINGTON G T, BENSON D,RAO A V. A corr^son ofaccuracy and computational efficiency of three pseudospectralmethods [ C ]//Proceedings of AIAA Guidance, Navigation andControl Conference, American Institute of Aeronautics and As-tronautics, Hilton Head, 2007, AIAA-20Q7-6W5:M3.
  • 10BETTS J T. Survey of numerical methods for trajectoryoptimization [ J ]. Journal of Guidance, Control, and Dy-namics, 1998,21(2) :193-207.

二级参考文献20

  • 1Hurni M A, Sekhavat P, Ross I M. Autonomous path planning using real-time information updates[R]. AIAA 2008 6305, 2008.
  • 2Shimoda S, Kuroda Y, Iagnernrna K. Potential field navi gation of high speed unmanned ground vehicles on uneven terrain [C] //International Conference on Robotics and Automation. 2005: 2839-2844.
  • 3Kim S H, Bhattacharya R. Motion planning in obstacle rich environments[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(7): 433-450.
  • 4Lu W C, Mora Camino F, Achaibou K. A flatness based flight guidance control using neural networks[C]// IEEE the 24th Digital Avionics Systems Conference. 2005~ 6. C. 1.1-6. C. 1.7.
  • 5Nikolos I K, Valavanis K P. Evolutionary algorithm based of{line/online path planner for UAV navigation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2003, 33(6): 898-912.
  • 6Foo J L, Knutzon J, Kalivarapu V, et al. Path planning of unmanned aerial vehicles using B-splines and particle swarm optimization[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(4): 271 290.
  • 7Kaneshige J, Krishnakumar K. Artificial immune system approach for air combat maneuvering[C]// Proceedings of the International Society for Optical Engineering. 2007, 6560: 656009.
  • 8Frazzoli E, Dahleh M A, Feron E. Real time motion plan ning for agile autonomous vehicles[J].Journal of Guid ance, Control, and Dynamics, 2002, 25(1): 116-129.
  • 9Kuwata Y, Karaman S, Teo J, et al. Real time motion planning with applications to autonomous urban driving [J]. IEEE Transactions on Control Systems Technology, 2009, 17(5), 1105-1118.
  • 10Lewis L P R. Rapid motion planning and autonomous ol stacle avoidance for unmanned vehicles [D]. Monterey: Naval Postgraduate School, 2006.

共引文献48

同被引文献30

  • 1郑昌文,严平,丁明跃,苏康.飞行器航迹规划研究现状与趋势[J].宇航学报,2007,28(6):1441-1446. 被引量:94
  • 2施笑安,杨永生.面向UCAV系统的交互Agent协同技术[J].西安科技大学学报,2005,25(3):368-371. 被引量:3
  • 3Williams P. Aircraft Trajectory planning for terrain following incorporating actuator constraints [ J ]. Journal of Aircraft, 2005, 42(5): 1358 -1361.
  • 4Osteroos R K,Pachter M,Jacques D R. Full capability formation flight control [ C ] //AIAA Guidance, Navigation, and Control Conference. Rhode Island : AIAA,2004 : 1 - 15.
  • 5Dosilles A,Zidani H. Collision analysis for an UAV [ C ]//AIAA Guidance, Navigation, and Control Conference. Minneapolis: AIAA, 2012:1 -23.
  • 6Rao A V. A survey of numerical methods for optimal control[ J]. Advances in the Astronautical Sciences, 2009, 135 ( 1 ) : 497 - 528.
  • 7Darby C L, Hager W W, Rao A V. An hp-adaptive pseudospectral method for solving optimal control problems [ J ]. Optimal Control Applications and Methods, 2011, 32 (4): 476 - 502.
  • 8HONG Bei, XIN Wan-qing. Rapid gliding trajectory optimization via hp-adaptive pseudospectral method [ C ]//Proceedings of the 30th Chinese Control Conference. Yantai: IEEE, 2011 : 1956 - 1961.
  • 9苏菲,彭辉,沈林成.基于协进化多子群蚁群算法的多无人作战飞机协同航迹规划研究[J].兵工学报,2009,30(11):1562-1568. 被引量:20
  • 10孙阳光,丁明跃,周成平,傅阳光,蔡超.基于量子遗传算法的无人飞行器航迹规划[J].宇航学报,2010,31(3):648-654. 被引量:16

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部