期刊文献+

WENO格式与虚拟单元浸入边界法在笛卡尔网格中的应用 被引量:1

Application of WENO scheme with ghost cell immersed boundary method on Cartesian mesh
下载PDF
导出
摘要 高精度有限差分WENO格式在结构网格上处理具有复杂几何外形绕流问题时较困难,而虚拟单元浸入边界法却是一种较新颖且对网格的要求较低的方法,适用于复杂几何外形边界的处理.为此,在笛卡尔网格上采用WENO格式以求解Euler守恒律方程,试图将两者有效结合起来,希望能在笛卡尔网格上处理具有复杂几何外形的物体绕流问题.最后,几个经典数值算例的结果验证了该方法的有效性. Finite difference WENO scheme of high order accuracy scheme has difficulty in dealing with the prob- lem which has the flow over a complex geometry on structured mesh. While the ghost cell immersed boundary meth- od is a novel and general technique for handling a flow with complex geometry without any special needs of compu- ting mesh. We use the WENO scheme in conjunction with the ghost cell immersed boundary method to solve the a- bove-mentioned problem on Cartesian mesh. Finally, the results of some classic numerical tests are given to verify the effectiveness of this proposed method.
作者 李自启 朱君
出处 《南京信息工程大学学报(自然科学版)》 CAS 2013年第1期86-90,共5页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(11002071)
关键词 WENO格式 虚拟单元浸入边界法 笛卡尔网格 WENO scheme ghost cell immersed boundary method Cartesian mesh
  • 相关文献

参考文献11

  • 1Harten A, Osher S. Uniformly high-order accurate non-os-cillatory schemes. [ J ]. SIAM J Numer Anal, 1957,24 (2) : 279-309.
  • 2Liu X D, Osher S, Chan T. Weighted essentially non-os- cillatory shock-capturing schemes [ J ]. J Comp Phys,1994,115(1) :200-212.
  • 3Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes [ J ]. J Comp Phys, 1996,126 ( 1 ) : 202-228.
  • 4Shu C W. Essentially non-oscillatory and weighted essen- tially non-oscillatory schemes for hyperbolic conservation laws [ R ]. NASA ICASE Report, 1997:97-65.
  • 5Balsara D S, Shu CW. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy [ J ]. J Comp Phys, 2000, 160 ( 2 ) : 405 -452.
  • 6Dadone A. Symmetry technique for the numerical solution of the 2D Euler equations at impermeable boundaries [J]. Int J Numer Meth Fluids,1998,28 (7) :1093-1108.
  • 7Dadone A, Grossman B. Surface boundary conditions for the numerical solution of the Euler equations in three di- mensions[ J]. Lect Notes Phys, 1995,453 : 188-194.
  • 8Dadone A, Grossman B. Ghost-cell method with far field coarsening and mesh adaptation for Cartesian grids [ J ]. Computers & Fluids,2006 35 (7) :676-687.
  • 9Wang Z J, Sun Y Z. Curvature-based wall boundary con- dition for the Euler conditions on unstructured grids [ J ]. AIAA Journal,2003,41 ( 1 ) :27-33.
  • 10Forrer H, Jeltsch R. A higher-order boundary treatment for Cartesian-grid methods[ J]. J Comput Phy, 1998,140 (2) :259-277.

同被引文献14

  • 1Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation [ C ] // National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems, 1973.
  • 2Cockburn B,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conser- vation laws II : General framework [ J ] .Math Comp, 1989, 52(186) :411-435.
  • 3Cockburn B, Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conser- vation laws V : Multidimensional systems [ J ]. J Comput Phvs, 1998,141(2) : 199-224.
  • 4Chavent G,Salzano G.A finite-element method for the 1- D water flooding problem with gravity [ J ]. J Comput Phys, 1982,45 ( 3 ) : 307-344.
  • 5Raviart P A, Thomas J M. A finite element method for second order elliptic problems in mathematical aspects of the finite element method [ M ] //Morel J M, Teissier B, Lugosi G, et al.Lecture Notes in Math, Berlin : Springer Verlag, 1977.
  • 6Hu C Q, Shu C-W. A discontinuous Galerkin finite element methods for Hamihon-Jacobi equations [ J ].SIAM J Sci Comput, 1999,21:666-690.
  • 7Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems [ J ]. SIAM J Nnmer Anal, 1998,35 ( 6): 2440-2463.
  • 8Dadone A.Symmetry technique for the numerical solution of the 2D Euler equations at impermeable boundaries [J] .Int J Numer Meth Fluids, 1998,28(7):1093-1108.
  • 9Dadone A, Grossman B. Surface boundary conditions for the numerical solution of the Euler equations in three di- mensions [ J ]. Lecture Notes in Physics, 1995, 453: 188-194.
  • 10Dadone A, Grossman B. Ghost-Cell method with far field coarsening and mesh adaptation for Cartesian grids [ J ]. Computers & Fluids,2006,35(7) :676-687.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部