摘要
高精度有限差分WENO格式在结构网格上处理具有复杂几何外形绕流问题时较困难,而虚拟单元浸入边界法却是一种较新颖且对网格的要求较低的方法,适用于复杂几何外形边界的处理.为此,在笛卡尔网格上采用WENO格式以求解Euler守恒律方程,试图将两者有效结合起来,希望能在笛卡尔网格上处理具有复杂几何外形的物体绕流问题.最后,几个经典数值算例的结果验证了该方法的有效性.
Finite difference WENO scheme of high order accuracy scheme has difficulty in dealing with the prob- lem which has the flow over a complex geometry on structured mesh. While the ghost cell immersed boundary meth- od is a novel and general technique for handling a flow with complex geometry without any special needs of compu- ting mesh. We use the WENO scheme in conjunction with the ghost cell immersed boundary method to solve the a- bove-mentioned problem on Cartesian mesh. Finally, the results of some classic numerical tests are given to verify the effectiveness of this proposed method.
出处
《南京信息工程大学学报(自然科学版)》
CAS
2013年第1期86-90,共5页
Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金
国家自然科学基金(11002071)