期刊文献+

关于Bernoulli多项式和Euler多项式的卷积公式

On Convolution Formulae Involving Bernoulli and Euler Polynomials
下载PDF
导出
摘要 研究了Bernoulli多项式和Euler多项式的循环关系,运用组合技巧给出了Bernoulli多项式和Euler多项式的两个卷积公式. Some recurrence relationships between Bernoulli polynomials and Euler polynomials have been studied. With combinatorial techniques, two convolution formulae involving Bernoulli and Euler polynomi-als have been established.
作者 王春萍 何圆
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期15-17,共3页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071194)
关键词 BERNOULLI多项式 EULER多项式 卷积公式 Bernoulli polynomials Euler polynomials convolution formula
  • 相关文献

参考文献6

  • 1COHEN H. Number Theory, Volume II: Analytic and Modern Tools EM. New York: Springer-Verlag, 2007.
  • 2SANDOR J, CRSTICI B. Handbook of Number Theory II EM2. Dordrecht: Kluwer Acad Pub, 2004.
  • 3AGOH T, DILCHER K. Convolution Identities and Lacunary Recurrences for Bernoulli Numbers [J]. J Number Theo- ry, 2007, 124(1): 105-122.
  • 4HE Yuan, ZHANG Wen-peng. A Convolution Formula for Bernoulli Polynomials [J2. Ars Combin, 2013, 108(1): 97-104.
  • 5HE Yuan, ZHANG Wen-peng. Some Sum Relations Involving Bernoulli and Euler Polynomials [J]. Integral Trans Spe- cial Func, 2011, 22(3): 207-215.
  • 6PAN Hao, SUN Zhi-wei. New Identities Involving Bernoulli and Euler Polynomials [J2. J Combin Theory: Ser A, 2006, 113(1): 156-175.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部