期刊文献+

二维Volterra-Fredholm型积分方程问题Taylor配置解法及误差分析 被引量:1

Taylor Collocation Solution and Error Analysis for 2-Dimensional Volterra-Fredholm Integral Equations
下载PDF
导出
摘要 利用Taylor配置方法,研究二维Volterra-Fredholm型积分方程问题的数值解.即对研究的积分方程问题进行Taylor配置离散,将积分方程问题转化为代数方程进行求解,建立了Taylor逼近解的求解格式,给出了配置解与精确解的误差估计结果以及阐述理论分析的3个数值例子. An approximate method for solving 2-dimensional Voherra-Fredholm integral equations is presented by Taylor collocation method. That is, the Volterra-Fredholm integral equations are discretized by Taylor collocation method, which are transformed for the algebraic property systems, the format of Taylor collocation method are obtained. The results of error analysis are given between the collocation solution and the exact solution. Moreover, the effectiveness of this method are illustrated by means of 3 numerical examples.
出处 《五邑大学学报(自然科学版)》 CAS 2013年第1期1-5,31,共6页 Journal of Wuyi University(Natural Science Edition)
基金 广东省计算科学重点实验室开放基金资助项目(201206007)
关键词 二维Volterra-Fredholm型积分方程 Taylor配置解 误差分析 2-dimensional Volterra-Fredholm integral equations Taylor collocation solution error analysis
  • 相关文献

参考文献2

二级参考文献17

  • 1H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
  • 2H. Brunner, 3.P. Kauthen, The numerical solution of two-dimensional Volterra Integral Equation, IMA d. Numer. Anal., 9 (1989), 45-59.
  • 3H. Brunner and T. Tang, Polynomial spline collocation methods for the nonlinear Basset equation, Comput. Math. Appl., 18 (1989), 449-457.
  • 4C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
  • 5L.M. Delves, J.L. Mohanmed, Computational Methods for Integral Equations, Cambridge University Press 1985.
  • 6G.N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147-158.
  • 7H. Fujiwara, High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic, Preprint, RIMS, Kyoto University, 2006.
  • 8B. Guo and L. Wang, Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math., 14 (2001), 227-276.
  • 9B. Guo and L. Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128 (2004), 1-41.
  • 10S. Mckee, T. Tang and T. Diogo, An Euler-type method for two-dimensional Volterra Integral Equations of the first kind, IMA J. Numer. Anal., 20 (2000), 423-440.

共引文献33

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部