期刊文献+

水力机组仿射非线性预测控制研究 被引量:1

Study on affine nonlinear predictive control of hydraulic unit
原文传递
导出
摘要 本文首先针对一类特殊的仿射非线性系统,推导出非线性预测控制算法。然后将水力机组的基于特定工况点的仿射非线性系统模型变换为随运行工况变化的仿射非线性系统模型,并针对水力机组电液随动系统的实际约束等问题,求出其预测控制算法。最后分别对两种系统模型进行仿真计算和对比分析,结果显示第二种模型的控制品质明显好于第一种。本文算法简单快速,对提高水轮机调节系统的实时性和控制品质有现实意义。 This paper derives a nonlinear predictive control algorithm for a special class of affine nonlinear system, then converts this affine nonlinear system model for a specific operating point of hydraulic unit into one suitable for various operating conditions. To solve the model a predictive control algorithm is formulated for application to praetieal constraint problems of electro-hydraulie servo system. Simulation and comparison analysis show that the new model is better than the unconverted version in quality control. The control algorithm is simple and fast, so it is useful for improvement of real-time control and quality control of turbine system.
出处 《水力发电学报》 EI CSCD 北大核心 2013年第1期269-275,306,共8页 Journal of Hydroelectric Engineering
基金 河南省科技计划项目(102102210220) 河南省教育厅科技项目(12A520030) 郑州市科技计划项目(121PPTGG358-10)
关键词 水力机组 非线性模型 模型预测控制 仿射非线性系统 仿真 hydraulic unit nonlinear model model predictive control affine nonlinear system simulation
  • 相关文献

参考文献5

  • 1王柏林.水轮发电机组的模型参考自适应控制[J].自动化学报,1987,13(6):408-415.
  • 2Y. yang, Jenny Wang, James B. Rawlings. A New Robust Model Predictive Control Method II: examples[ J]. Journal of Process Control, 2004, (14) :249-262.
  • 3方洪庆.水力机组非线性控制策略及其工程应用研究[D].南京:河海大学,2005:67-90.
  • 4Garcia C E,Prett D M, M orari M. Model Predictive Control: Theory and Practice Survey[ J]. Automatica, 1989,25 (3) :335-348,.
  • 5沈祖诒.水轮机调节系统分析[M].北京:水利电力出版社,1996..

共引文献8

同被引文献15

  • 1P()DI.UBNY I. Fractional-order systems and PlXl~ controllers[J]. IEEE Trans on Automatic Control, 1999,44 (1) : 208-214.
  • 2Indranil Pan,Saptarshi Das. Chaotic multi-objective optimization based design of fractional order Plal)~ controller in AVR system [J]. Electrical Power and Energy Systems, 2012(43).-393-407.
  • 3Tang Y G,Cui M Y, H ua C C, etal. Optimum design of fractional order PDI)' controller for AVR system using chaotic ant swarm[J]. Expert Systems with Applications, 2012(39):6 887-6 896.
  • 4Kennedy J, Eherhart R. Particle swarm optimization[C]//Pro- ceedings of the 1995 IEEE International Conference on Neural Networks, Perth, 1995.
  • 5Ere M. Fractional order systems in industrial automation-a sur- vey[J]. Indust Inform IEEE Trans 2011, (99): 1-1.
  • 6Xue D Y, Zhao C N, Chen Y Q. A Modified Approximation Method of Fractional Order System[C]// Proceedings of the 2006 IEEE International Conference on Mechatronics and Auto- mation, Luoyang, China, 2006 : 1 043- 1 048.
  • 7Liu B, Wang L, Jin Y H, et al. Improved particle swarm optimiza- tion combined with chaos [J]. Chaos, Solitons and Fractals, 2005,25(5)..1 261-1 271.
  • 8Liu B, Wang L,Jin Y H, et al. Improved particle swarm optimiza- tion combined with chaos [J]. Chaos, Solitons and Fractals, 2005,25(5):1 261-1 271.
  • 9王明东,刘宪林,于继来.水轮发电机组调速系统的可拓控制[J].水力发电学报,2009,28(4):171-175. 被引量:5
  • 10张彤,王宏伟,王子才.变尺度混沌优化方法及其应用[J].控制与决策,1999,14(3):285-288. 被引量:225

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部