摘要
研究了模2n减法运算的最佳线性逼近问题。利用模2n加减法线性逼近相关值之间的关系,给出了模2n减法最佳线性逼近相关值的计算公式;构造了模2n减法最佳线性逼近集的递归算法。文章的研究从理论上更清楚地刻画了模2n减法最佳线性逼近的内在规律,有助于更好地利用该线性逼近关系实现对实际密码算法的有效分析。
The best linear approximation of subtraction modulo 2n is studied in this paper. Firstly, the formula for maximum correlations of subtraction modulo 2n is proposed by using the relation be- tween linear approximation of subtraction and addition modulo 2n. Moreover,a recursive algorithm to construct the best linear approximation set of subtraction modulo 2n is provided. The paper charac- terizes the inner principle of best linear approximation of subtraction modulo 2n theoretically,which will help to use the linear approximation relation to realize an effective analysis of cryptographic algo- rithms.
出处
《信息工程大学学报》
2013年第1期1-6,共6页
Journal of Information Engineering University
基金
国家自然科学基金资助项目(61070178)
关键词
密码学
相关值
最佳线性逼近
模2n减法
cryptography
correlation
best linear approximation
subtraction modulo 2n