期刊文献+

基于属性约简的PLS加权朴素贝叶斯分类 被引量:3

Weighted naive Bayes classifier based on attribute reduction-PLS
下载PDF
导出
摘要 朴素贝叶斯算法是一种简单而高效的分类算法,它的属性独立性假设,影响了它的分类性能.针对这种问题,在分析属性相关性的基础上,通过属性约简选择一组近似独立的属性约简子集,提出一种基于属性约简的偏最小二乘回归加权朴素贝叶斯分类算法.对不同的条件属性给予不同的权值,从而在保持简单性的基础上有效地提高了朴素贝叶斯分类算法的分类性能.实验结果表明,该方法可行且有效. Naive Bayes classifier is a simple and effective classification method, but its attribute independence as- sumption affect its classification performance. In response to this problem,based on the analysis of attribute correla- tion,a set of approximate independent subset of attribute reduction is selected by attribute reduction,weighted naive Bayes classifier based on attribute reduction-PLS is proposed. Different conditions attribute give different weights, thus it effectively improve the classification performance of naive Bayes algorithm on the basis of simplicity. Experi- mental results show that the method is feasible and effective.
出处 《西安工程大学学报》 CAS 2013年第1期118-121,共4页 Journal of Xi’an Polytechnic University
基金 陕西省教育厅自然科学专项基金项目(12JK0744)
关键词 加权朴素贝叶斯分类 属性约简 偏最小二乘回归 weighted naive Bayes attribute reduction partial least squares
  • 相关文献

参考文献6

二级参考文献54

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 3邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 4Roll E. Constrained numerical optimization of PCR/ PLSR predictors[J]. Chemometries and Intelligent Laboratory Systems, 2003, 65(5): 293-303.
  • 5Pawlak Z. Rough set theory and its applications to data analysis[J]. Cybernetics and System, 1998, 29(7): 661-668.
  • 6Pawlak Z.Rough Sets:Theoretical Aspects of Reasoning about Data[M].Kluwer Academic Publishers.
  • 7Keyun Hu,Lili Diao,Chunyi Shi.A Heuristic Optimal Reduct Algorithm,22nd intl.Sym[C].In :intelligent data engineering and automated learning(IDEAL2000) ,Hong Kong,2000-11.
  • 8Lei Y,Huan L.Efficiently Handling Feature Redundancy in High Dimensional[C].In :Data SIGKDD'03,2003:685~690.
  • 9Blake C L,Merz C J.UCI Repository of Machine Learning Databases. http://www.ics.uci.edu/~mlearn/MLRepository.html.
  • 10Aleksander φhrn. Inst of Mathematics, University of Warsaw, Poland. http://www.idi.ntnu.no/~aleks/rosetta/.

共引文献112

同被引文献36

  • 1彭伟良,蒋耀兴.山羊绒和细支绵羊毛纤维的图像识别技术[J].实验室研究与探索,2005,24(4):28-29. 被引量:8
  • 2程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 3邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 4Ratanamahatana C A,Gunopulos D.Scaling up the Naive Bayesian Classifier:Using Decision Trees for Feature Selection[C]∥Proceedings of Workshop on Data Cleaning and Preprocessing,at IEEE International Conference on Data Mining.Maebashi,Japan,2002.
  • 5Ong H C,Khoo M Y,Saw S L.An Improvement on the Nave Bayes Classifier[C]∥International Conference on Information and Knowledge Management (2012).Singapore,2012:190-194.
  • 6Yin Xiao-xin,Han Jia-wei,Yang Jiong,et al.Efficient classification across multiple database relations:a CrossMine approach[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(6):770-783.
  • 7Liu Hong-yan,Yin Xiao-xin,Han Jia-wei.An efficient multi-relational naive bayesian classifier based on semantic relationship graphs[C]∥Proceedings of the 4th international workshop on Multi-relational mining.Chicago,Illinois,2005:39-48.
  • 8Zhang H,Sheng Li.Learning Weighted Naive Bayes with accurate ranking[C]∥The 4th IEEE International Conference on Data Mining (ICDM04).Brighton:IEEE Computer Society,2004:567-570.
  • 9Guo Bao-en,Liu Hai-tao.Assigning Hybrid-Weight for Feature Attribute in Nave Bayesian Classifier[C]∥2012 International Proceedings of Computer Science and Information Technology(2012).Hongkong,2012:86-90.
  • 10Frank E,Hall M,Pfahringer B.Locally weighted naive Bayes[C]∥The 19th Conference in Uncertainty in Artificial Intelligence(2003).Acapulco,Mexico:Morgan Kaufmann,2003:249-256.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部