期刊文献+

连续投资过程中的资金规划研究 被引量:1

Study on the Capital Programming of Continuous Investment Process
下载PDF
导出
摘要 传统资产配置模型讨论的是一个时间段内的资金规划问题,因此存在一个总资金约束,即所有投资机会的投入资金总和不超过初始资金。如果在规划模型中考虑加入投资机会的起止时间因素,约束条件将变得更为复杂。文章给出了该类规划问题约束方程的通用形式,指出其求解方法,探讨了实际操作中的决策流程,最后给出了一个算例并与其他方法进行了比较,结果显示该方法在不同目标函数下均能有效达到规划目标。 Generally speaking, traditional models of asset allocation discuss capital allocation in a certain period of time, thus therc is the total capital constrains which is the total capital invested in opportunities must be less than or equal to the initial capital.If time factor including starting and ending time of an investment opportunity is added to the programming model, the constrain! will become more complicated.ln this paper, a general capital constraint is proposed, and its solution is also presented. Then the whole process of programming is put forward by analyzing cases in the actual investment. At last, an example is given to compare with other methods, which shows the programming can achieve its goal under different objective functions and has better performance.
出处 《华东经济管理》 CSSCI 2013年第3期91-95,共5页 East China Economic Management
关键词 资金规划 非线形规划 投资决策 连续投资过程 capital programming nonlinear programming investment decision continuous investment process
  • 相关文献

参考文献12

  • 1Markowitz Harry. Portfolio Selection [J] 1952(7) :77-91.
  • 2Markowitz Harry. Portfolio Selection: Efficient Diversification of Investment[ M ]. New York:John Wiley & Sons, 1959.
  • 3Mossin J. Optimal multi-period portfolio policies [J]. Journal of Business, 1968,41 (2) :215-229.
  • 4Li D, Ng W L. Optimal dynamic portfolio selection : Multi-peri- od mean-variance formulation [J]. Mathematical Finance, 2000, 10 (3) : 387-406.
  • 5Zhou X Y, Li D. Continuous time mean-variance portfolio se- lection : A stochastic LQ framework [J ]. Applied Mathematics and Optimization,2000,42( 1 ): 19-33.
  • 6Bellman Richard. The theory of dynamic programming [J]. Bulletin of the American Mathematical Society, 1954, 60 (11):503-516.
  • 7Stuart E, Dreyfus, Averill M Law. The art and theory of dynam- ic programming[ M ]. Utah : Academic Press, 1977.
  • 8DijkstraE W E W. A note on two problems in connexion with graphs[J ]. Numerische Mathemalik, 1959( 1 ) : 269-271.
  • 9Garey M R, Johnson D S. Compute and Intractahility: a guide to the theory of NP-completeness [M]. New York: W. H. Freeman and Company, 1979.
  • 10Boggs P T, Tolle J W. Sequential quadratic programming [ J ]. Acta N umerica, 1995 (4) : 1-51.

同被引文献4

  • 1钱颂迪.运筹学[M].北京:清华大学出版社,2005..
  • 2Harry Markowitz. Portfolio Selection [ J]. The Journal of Finance,Vol. 7,No. 1. (Mar. ,1952),pp. 77-91.
  • 3Kan, Yu. S. , Krasnopol' skaya, A. N.. Selection of a Fixed - Income Portfolio [ J]. Autom Remote Control, 2006, no. 4,pp. 598 - 605.
  • 4Frank J. Fabozzi, Sergio M. Focardi, Petter N. Kolm. Quantitative equity investing:techniques and strate- gies [ M]. New York City:John Wiley & Sons,Inc,2010.

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部