期刊文献+

基于抽取-精化的概率系统假设-保证验证

Assume-guarantee verification of probabilistic systems based on abstraction refinement
下载PDF
导出
摘要 假设-保证推理是标记迁移系统组合验证的有效手段,近期,假设-保证推理在概率系统的验证中也得到了应用。在推理中,假设的学习是通过Lstar算法来完成的。针对概率系统的假设-保证推理,提出了一种新的方法:首先直接对组合系统的一个组件进行抽取,得到一个初步的假设;通过与假设-保证规则进行多次交互,不断精化该假设;最后,要么得到一个适当的假设以证明结论的正确性,要么得到一个反例来证明结论不成立。 Assume-Guarantee reasoning is an efficient means of synthetic verification of label transi- tion systems. Recently, Assume-Guarantee reasoning has been used in verifying probabilistic systems. In the phase of reasoning, the learning of assume is accomplished by L start algorithm. In the paper, we propose a new method of Assume-Guarantee Reasoning for probabilistic systems. Firstly, a component of the composed system is abstracted directly to obtain an initial hypothesis. Secondly, by iterating with the Assume-Guarantee rule, the hypothesis is refined repeatedly. At last, a proper hypothesis is ob- tained to prove the correctness of the conclusion, or a counterexample is obtained to prove that the con- clusion is incorrect.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第3期128-133,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61272083 61262002) 宁波市自然科学基金资助项目(2012A610063)
关键词 假设-保证验证 抽取精化 概率自动机 概率时间自动机 组合验证 assume-guarantee verification abstraction refinement probabilistic automata probabilis-tic timed automata compositional verification
  • 相关文献

参考文献13

  • 1Pasareanu C, Giannakopoulou D, Bobaru M, et al. Learning to divide and conquer: Applying the L * algorithm to auto mate assume-guarantee reasoning [J]. Formal Methods in System Design,2008, 32(3) :175-205.
  • 2Bobaru M G, Pasareanul C S, Giannakopoulou D. Automa- ted assume guarantee reasoning by abstraction refinement[C] // Proc of CAV08, 2008:135-148.
  • 3Kwiatkowska M, Norman G, Parker D. Advances and chal lenges of probabilistic model checking[C]//Proc of the 48th Annual Allerton Conference on Communication, Control and Computing, 2010: 1691-1698.
  • 4Kwiatkowska M, Norman G, Parker D, et al. Assume-guar- antee verification for probabilistic systems [C]// Proc of TACAS10, 2010: 23-37.
  • 5Feng L, Kwiatkowska M, Parker D. Compositional verifica- tion of probabilistie systems using learning[C]//Proc of QEST10, 2010, 133-142.
  • 6Delahayel B, Katoen J P, Larsen K G, et al. Abstract prob- abilistic automata[C]//Proc of VMCAI11. 2011 : 324-339.
  • 7Delahayel B, Katoen J P, Larsen K G, et al. New results on abstract probabilistic automata[C]//Proc of ACSD11, 2011: 118-127.
  • 8Han T, Katoen J P, Damman B. Counterexample generation in probabilistic model checking[J]. IEEE Transactions on Software Engineering, 2009, 35 (2) : 241-257.
  • 9PRISM[EB/OL]. [2012-07-01]. http://www, prismmodel- checker, org/.
  • 10Kwiatkowska M, Norman G, Parker D, et al. Symbolic mod- el checking for probabilistic timed automata[C]//Proc of FORMATS and FTRTFT, 2004 : 293-308.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部