期刊文献+

多源知识融合处理算法 被引量:28

Multi-source knowledge fusion algorithm
下载PDF
导出
摘要 多源知识融合可有效提高判决结果的可靠性和置信度.借鉴信息融合的思路,分析了知识融合方法和一般模型.重点讨论了基于Bayes准则、基于D-S(Dempster-Shafer)证据理论以及基于模糊集理论的知识融合算法,给出了基于3种知识融合算法的具体处理步骤,并从算法特点和适用性、实用性等方面对3种知识融合算法性能进行了对比分析.通过知识融合在合成孔径雷达(SAR,Synthetic Aperture Radar)图像融合中应用的仿真实验,验证了知识融合算法的有效性. Multiple source knowledge fusion can effectively enhance the reliability and credibility of the ruling result. In the light of information fusion, methods and general model of knowledge fusion were ana- lyzed, with emphasis on knowledge fusion algorithms based on Bayes rule, Dempster-Shafer(D-S) proof theo- ry and fuzzy sets theory. Explicit processing steps of the algorithms mentioned above were presented, and com- parison between which from the perspectives of the characteristics, applicability wend practicability were drawn as well. Finally, the knowledge fusion algorithms based on Bayes theory was introduced into the field of syn- thetic aperture radar (SAR) image fusions. Simulation results show the effectiveness of the multiple source knowledge fusion algorithms.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第1期109-114,共6页 Journal of Beijing University of Aeronautics and Astronautics
关键词 多源知识融合 Bayes准则 D-S证据理论 模糊集 knowledge fusion Bayes rule D-S evidence theory fuzzy sets
  • 相关文献

参考文献11

  • 1Valet L, Mauris G, Bolon Ph,et al. A statistical overview of re- cent literature in information fusion[ J]. IEEE Aerospace and E- lectronic Systems Magazine ,2000,16 ( 3 ) : 1 - 14.
  • 2王爽,郭军海,张艳,刘元.导弹目标识别的最小贝叶斯风险分类器[J].现代防御技术,2012,40(1):60-64. 被引量:2
  • 3Dempster A. Upper and lower probabilities induced by multival- ued mapping[ J ]. Am Math Statist, 1967,38 ( 2 ) :325-339.
  • 4Shafer G. A mathematical theory of evidence [ M ]. Princeton, NJ : Princeton University Press, 1976.
  • 5Zadeh L A. Fuzzy sets[ J ]. Information and Control, 1965,8 (3) : 338 -353.
  • 6Abdulghafour M,Chandra T, Abidi A. Data fusion through fuzzy logic applied to feature extraction from multi-sensory images [ C]//IEEE International Conference on Robotics and Automa- tion. Piscataway, NJ : 1EEE, 1993 : 359- 366.
  • 7Sugeno M. Fuzzy measures and fuzzy integrals: a survey [ C ]// Fuzzy Automata and Decision Processes. Amsterdam:North-Hol- land, 1977:79-86.
  • 8Tahani H, Keller J M. Information fusion in computer vision using the fuzzy integral[ J ]. IEEE Transactions on Systems, Man, and Cybernetics, 1990,20 ( 3 ) :733-741.
  • 9Yang Baohua, He Ping, Wang Benli. Research on fuzzy model and algorithms for data fusion [ C ]//Proceedings of the Second International Conference on Machine Learning and Cybernetics. Piscataway, NJ : IEEE ,2003:2480-2484.
  • 10潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:183

二级参考文献18

共引文献183

同被引文献312

引证文献28

二级引证文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部