期刊文献+

视频序列中面向行人的多目标跟踪算法 被引量:3

Pedestrian Oriented Multi-Object Tracking Algorithm in Video Sequence
下载PDF
导出
摘要 为实现视频序列中多行人目标跟踪,基于多信息融合方法,考虑多目标间严重遮挡,建立面向行人的多目标跟踪算法.提出多信息融合算法融合目标颜色和运动信息,结合均值漂移算法思想,实现常态下目标跟踪.针对多行人目标参与的遮挡,通过理论分析遮挡过程中目标面积变化,提出遮挡因子判别遮挡发生、辨识遮挡者和被遮挡对象、确认被遮挡对象重新出现等.实验结果表明,该方法能够正确跟踪行人目标,判断并处理多目标间的严重遮挡. To track pedestrian oriented multiple objects in video sequence, this paper presents a tracking algorithm using multi-cue integration approach and high degree occlusion processing. Combined with the mean-shift algorithm, multi-cue integration method could track object in normal condition by fusing the color and motion information. To deal with the issue of occlusion involving multiple objects, the area change of the object during occlusion has been analyzed in theory. An occlusion factor is advanced to detect occlusion occur, identify obstructer or occluded object and to check the reappearance of an occluded object. Experiment results show that the proposed tracking algorithm could correctly find out and resolve the occlusion among the multiple objects so that it could successfully track the multiple pedestrians.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第2期178-184,共7页 Transactions of Beijing Institute of Technology
基金 国家重点基础研究发展计划资助课题(2012CB725403)
关键词 智能交通 多目标跟踪 行人跟踪 多信息融合 严重遮挡 intelligence transportation multi-object tracking~ pedestrian tracking multi-cue integration full occlusion
  • 相关文献

参考文献12

二级参考文献59

  • 1常好丽,史忠科.基于单目视觉的运动行人检测与跟踪方法[J].交通运输工程学报,2006,6(2):55-59. 被引量:12
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3李志慧,张长海,曲昭伟,王殿海.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报(工学版),2006,36(6):993-997. 被引量:16
  • 4常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 5KOLLER D, DANILIDIS K, NAGEL H H. Model-based object tracking in monocular image sequences of road traffic scenes [ J]. International Journal of Computer Vision, 1993, 10 (3) : 257-281.
  • 6COIFMAN B, BEYMER D, MALIK J. A real-time computer vision system for vehicle tracking and traffic surveillance[ J]. Transport Res: Part C, 1998, 6(4) : 271-288.
  • 7PARAGIOS N, DERICHE R. Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision[J]. Visual Commun Image Represent, 2002: 249-268.
  • 8KATO J, WATANABE T, JOGA S, et al. An HMM /MRF based stochastic framework for robust vehicle tracking[ J]. Intelligent Transportation Systems, 2004, 5 (3) : 142-154.
  • 9RAD R, JAMZAD M. Real time classification and tracking of multiple vehicles in highways[ J]. Pattern Recognition Letters, 2005, 26: 1597-1607.
  • 10CUCCHIARA R, GRANA C, TARDINI G, et al. Probabilistic people tracking for occlusion handling[ C] //Proceedings of the 17th International Conference on ICPR. Washington DC USA: IEEE Computer Society, 2004, 1: 132-135.

共引文献52

同被引文献13

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部