期刊文献+

无线传感器网络离群时间序列检测研究 被引量:3

Outlier Time Series Detection Based on WSN
下载PDF
导出
摘要 基于无线传感器网络的环境监测系统中,广泛存在着离群数据。目前,一个有趣但还没有被广泛讨论的问题是离群时间序列的检测问题。为了满足大规模数据集快速离群数据检测的需求,本文提出了一种新的无线传感器网络离群时间序列检测算法,通过引入切比雪夫多项式实现离群数据快速检测。通过NS2仿真实验,证明了该算法的可行性和有效性。 Outliers are very common in the environmental data monitored by a sensor network. An interesting problem which has not been adequately addressed so far is the detection of outlier time series. In order to meet the need of rapid outlier detection for large-scale data sets, this paper provides a new outlier time series detection in WSN. The algorithm introduces Chebyshev polynomials to detect the outlier data. The algorithm was verified by NS2 simulator. Simulator results demonstrate that this algorithm keeps a high precision.
作者 唐琪 刘学军
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第1期95-99,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61073197) 江苏省科技支撑计划项目(SBE201077457)
关键词 离群数据 无线传感器网络 时间序列 切比雪夫多项式 outlier data Wireless Sensor Network time series Chebyshev polynomial
  • 相关文献

参考文献17

  • 1任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291. 被引量:1709
  • 2周贤伟,王培,覃伯平,申吉红.一种无线传感器网络异常检测技术研究[J].传感技术学报,2007,20(8):1870-1874. 被引量:13
  • 3杨黎斌,慕德俊,蔡晓妍.基于核聚类的无线传感器网络异常检测方案[J].传感技术学报,2008,21(8):1442-1447. 被引量:17
  • 4孙金花,胡健,李向阳.基于分形理论的离群点检测[J].计算机工程,2011,37(3):33-35. 被引量:5
  • 5Vu N H, Gopalkrishnan V. Efficient Pruning Schemes for Distance- Based Outlier Detection [ C ]. Proc. of the European Conference on Machine Learning and Knowledge Discovery in Databases ,2009 :160 -175.
  • 6薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 7Faloutsos C, Ranganathan M, Manolopoulos Y. Fast Subsequence Matching in Time-Series Databases [ C ]. Proc. SIGMOD, 1994:419 -429.
  • 8Wu Y,Agrawal D,Abbadi A. A Comparison of DWT and DWT Based Similarity Search in Time-Series Databases [ C ]. Proc. CIKM ,2000: 488 -495.
  • 9Keogh E, Chakrabarti K, Pazzani M, et al. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases [ C ]. Proc. ACM SIGMOD,2001 : 151 - 162.
  • 10Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases [ J ]. Journal of Knowledge and hfformation Systems ,2000:263-286.

二级参考文献81

  • 1杨新宇,曾明,赵瑞,吴航.分形理论在网络流量分析中的应用综述[J].计算机工程,2004,30(23):17-18. 被引量:2
  • 2张重庆,李明禄,伍民友.数据收集传感器网络的负载平衡网络构建方法[J].软件学报,2007,18(5):1110-1121. 被引量:29
  • 3Ramaswamy S,Rastogi R,Kyuseok S.Efficient Algorithms for Mining Outliers from Large Data Sets[C]//Proe.of 2000 ACM SIGMOD International Conference on Management of Data.Dallas,Texas,USA:[s.n.],2000:93-104.
  • 4Angiulli F,Pizzuti C.Outlier Mining in Large High-dimensional Data Sets[J].IEEE Tram.on Knowledge and Data Engineering,2005,17(2):203-215.
  • 5He Zengyou,Deng Shengchun,Xu Xiaofei.An Optimization Model for Outlier Detection in Categorical Data[C]//Proc.of 2005International Conference on Intelligent Computing.Hefei,China:[s.n.],2005:400409.
  • 6Aggarwal C C,Philip S Y.Outlier Detection for High-dimensional Data[C]//Proc.of 2001 ACM SIGMOD International Confcfence on Management of Data.Santa Barbara,USA:[s.n.],2001:37-46.
  • 7Cristofor D,Simovici D.Finding Median Paaitions Using Information Theoretical-based Genetic Algofithms[J].Journal of Universal Computer Science,2002,8(2):153-172.
  • 8ALERT. http://www.altersystem.org.
  • 9Bonnet P, Gehrke J, Seshadri P. Querying the physical world. IEEE Personal Communication, 2000,7(5):10-15.
  • 10Noury N, Herve T, Rialle V, Virone G, Mercier E. Monitoring behavior in home using a smart fall sensor. In: Proceedings of the IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Lyon: IEEE Computer Society, 2000.607~610.

共引文献1830

同被引文献42

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部