期刊文献+

非线性椭圆方程改进的极值原理(英文) 被引量:2

THE REFINED MAXIMUM PRINCIPLE FOR NONLINEAR ELLIPTIC EQUATIONS ON GENERAL BOUNDED DOMAINS
下载PDF
导出
摘要 证明了任意有界区域上二阶非线性椭圆方程Dirichlet问题改进的极值原理。 The refined ABP maximum principle, comparison principle, and related existence and uniqueness theorem are proved for the Dirichlet problem of second order nonlinear elliptic equation on arbitrary domains.
作者 保继光
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2000年第5期574-578,共5页 Journal of Beijing Normal University(Natural Science)
基金 ProjectSupportedbyNSFC (197710 0 9)
关键词 非线性椭圆方程 极值原理 有界区域 nonlinear elliptic equation refined ABP maximum principle arbitrary bounded domain
  • 相关文献

参考文献5

  • 1[1]Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order. 2nd ed. New York: Springer-Verlag, 1983
  • 2[2]Ladyzhenskaya O A, Uraltseva N N. Linear and quasilinear elliptic equations. New York: Academic Press, 1968
  • 3[3]Protter M H, Weinberger H F. Maximum principles in differential equations. New Jersey: Prentice-Hall, Englewood Cliffs, 1967
  • 4[4]Berestycki H, Nirenberg L, Varadhan S V R. The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm Pure and Appl Math, 1994, 47:47
  • 5[5]Chang K C, Jiang M Y. Parabolic equations and the Feynman-Kac formula on general bounded domains (preprint), Institute of Mathematics. Peking University

同被引文献7

  • 1Protter M H, Weinberger H F. Maximum principle in differential equations[M]. Prentice: Prentice Hall, 1967
  • 2Gilbarg D, Trudinger N. Elliptic partial differential equations of second order[M]. New York: Springer,1977
  • 3姜礼尚,陈亚浙.数学物理方程[M].北京:高等教育出版社,1986
  • 4Li Y Y, Nirenberg L. A geometric problem and the Hopf lemma[J].J Eur Math Soc, 2006, 8:317
  • 5Sun Wenmin, Bao Jiguang, New maximum principles for fully nonlinear ODEs of second order, 2006, Preprint
  • 6丁俊堂.一类非线性散度形椭圆方程的最大值原理[J].数学的实践与认识,2002,32(1):114-121. 被引量:7
  • 7谢朝东,焦华,王梅.二阶拟线性椭圆型方程组广义解的正则性[J].贵州科学,2003,21(4):20-25. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部