摘要
给出数值模拟Kelvin Helmholtz不稳定性发展的离散涡方法及线化发展方程组的通解 ,并从线化问题解的初始条件出发 ,对Atwood数α、Froude数F及Bond数的倒数 β值的各种不同组合下的Kelvin Helmholtz不稳定性的大变形发展进行了数值模拟 ,发现了界面大变形特性对这 3个参数依赖关系的一些规律 .采用随界面变形增大逐一增加计算点的办法 ,使界面大变形数值模拟的工作量进一步大大减小 .
The discrete vortex method for the numerical simulation of the evolution of Kelvin Helmholtz instability and the general solution of the system of the linearized evolution equations are geiven. The Kelvin Helmholtz instabilities in the large deformation stage are simulated numerically for various combinations of values of Atwood number α , Froude number F and β (the reciprocal of Bond number) and some patterns of the dependence of the large interfacial deformation behaviors on the three parameters are found. The computational points are added one by one in accordance with the increase of the interfacial deformation, which makes the computational amounts of the numerical simulation of large interfacial deformation decreased dramatically further.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2000年第5期533-540,共8页
Journal of Fudan University:Natural Science
基金
国家自然科学基金!资助项目 (1 8972 0 1 9)
关键词
大变形
数值模拟
K-H不稳定性
流体界面
Kelvin Helmholtz instability
large deformation
numerical simulation
discrete vortex method