期刊文献+

分数阶微分方程三点边值问题正解的存在性和唯一性 被引量:4

The Existence of Positive Solutions for Boundary Value Problem of Nonlinear Fractional Functional Differential Equations
下载PDF
导出
摘要 研究了一类非线性分数阶微分方程边值问题正解的存在性问题,利用Leray-Schauder抉择定理得到其正解的存在性,利用Banach压缩映像定理得到其正解的唯一性. The following nonlinear fractional boundary value problem is researehed. We obtain the existence results of positive solutions by applying Leray-Schauder nonlinear alternative theorem. We give the uniqueness of positive solution by means of Banach fixed point theorem.
出处 《伊犁师范学院学报(自然科学版)》 2013年第1期1-4,共4页 Journal of Yili Normal University:Natural Science Edition
基金 新疆普通高校重点学科开放课题重点项目(XJZDXK2011004)
关键词 分数阶微分方程 边值问题 正解 Fractional differential equation bou'~dary value problem positive solutions
  • 相关文献

参考文献10

  • 1A A Killbas, Srivastava H M,Trujillo J J. Theory and Application of Fraction Differential Equation[M]. North-Holland Mathematic Studies 204, Amsterdam: Elsevier Science B V, 2006.
  • 2K B Oldham, J Spanier. The Fractional Calculus[M]. New York, London: Academic Press, 1974.
  • 3F B Tatom. The relationship between fraction calculus and fractals [J]. Fractals, 1995(3): 217-229.
  • 4S G Samko, A A Kilbas, O I Marichev. Fractional Integral and Derivatives (Theory and Application) IM]. Switzerland: Gordon and Breach, 1993.
  • 5Bai Z., Lv H. Positive solutions for boundary value problem of nonlinear fractional differential equation[J], J. Math. Anal.AppL, 2005, 311 : 495-505.
  • 6M EI-Shahed. Positive solutions for boundary value problems of nonlinear fractional differential equation[J]. Abstract and Applied Analysis, 2007, Article ID 10368, 8 pages, doi: 10.1155/2007/10368.
  • 7N Kosmatov. A singlar boundary value problem of nonlinear fractional differential equations of fractional order [J]. Journal of Applied Mathematics and Computing, 2008, 29(1): 125-135.
  • 8Li C F, Luo X N,Zhong Y. Existence of positive solutions of the boundary value problem for non-linear fractional differential equations[J]. Computers and Mathematics with Applications, 2010, 59: 1365-1375.
  • 9罗华,胡卫敏.非线性分数阶微分方程边值问题正解的存在性和唯一性[J].伊犁师范学院学报(自然科学版),2012,6(4):1-7. 被引量:2
  • 10邱中蔚,胡卫敏,张晓娜.一类分数阶微分方程边值问题解的存在性[J].伊犁师范学院学报(自然科学版),2012,6(2):1-4. 被引量:2

二级参考文献2

共引文献1

同被引文献32

  • 1钟文勇.分数阶微分方程多点边值问题的正解[J].吉首大学学报(自然科学版),2010,31(1):9-12. 被引量:9
  • 2LiHongyu,SunJingxian.POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS[J].Annals of Differential Equations,2005,21(2):153-160. 被引量:19
  • 3Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation[J], dMath AnalAppl, 1996, 204(1): 609-625.
  • 4Wang G, Ahmad B, Zhang L. Impulsive anti-periodic boundary value problem for nonlinear diffenential equations of fractional order [J]. Nonlinear Anal, 2011, 74: 792-804.
  • 5Zhou W, Chu Y. Existence of solutions for fractional differential equations with multi-point boundary conditions [J]. Commun Nonlinear Sci Numer Simulat, 2012, 17:1142-1148.
  • 6Zhou Y, Jiao F. Nonloeal Cauthy problem for fractional evolution equations [J]. Nonlinear Anal: RWA, 2010, 11: 4465-4475.
  • 7Wong F H. Existence of positive solutions of singular boundary value problems [J ]. Nonlinear Anal, 1993, 21: 397-406.
  • 8K S Ha, Y.H. Lee. Existence of multiple positive solutions of singular boundary value problems [J]. Nonlinear Anal, 1998, 28 37 -44.
  • 9Agarwal R P, O' Regan D. A note on existence of nonnegative solutions to singular semipositone problems [J ]. Nonlinear Anal, 1999, 36(5) : 615-622.
  • 10Ma R Y.. Positive solutions of nonlinear three-point boundary value problem [ J ]. Electron. J. Differential Equations, 1999, 34: 1-8.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部