期刊文献+

强Ω-Gorenstein内射模 被引量:2

Strongly Ω-Gorenstein injective modules
原文传递
导出
摘要 定义了强Ω-Gorenstein内射模,利用同调的方法讨论了强Ω-Gorenstein内射模的性质。举例说明了强Ω-Gorenstein内射模类真包含于Ω-Gorenstein内射模类。最后证明了M是Ω-Gorenstein内射模当且仅当M是强Ω-Gorenstein内射模的直和因子。 The strongly Ω-Gorenstein injective modules are defined and the properties of strongly Ω-Gorenstein injective modules are discussed by homological method. Some examples are given to show that the class of Ω-Gorenstein injec-tive modules contains the class of strongly Ω-Gorenstein injective modules. At last, it is proved that M is Ω-Gorenstein injective modules if and only if M is a direct summand of a strongly Ω-Gorenstein injective modules.
作者 王欣欣
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第2期23-26,共4页 Journal of Shandong University(Natural Science)
基金 陇东学院青年科技创新项目(XYZK1207) 国家自然科学基金资助项目(10901129 71161061)
关键词 强Gorenstein内射模 Ω-Gorenstein内射模 强Ω-Gorenstein内射模 strongly Gorenstein injective modules Ω-Gorenstein injective modules strongly Ω-Gorenstein injectivemodules
  • 相关文献

参考文献8

  • 1ENOCHS E E,JENDA O M G. On Gorenstein injective modules[ J]. Comm Algebra, 1993,21:3489-3501.
  • 2ENOCHS E E,JENDA O M G. Gorenstein injective and projective modules[ J]. Math Z, 1995,220:611-633.
  • 3BENNIS D,MAHDOU N. Strongly Gorenstein projective,injective and flat modules[ J]. J pure Appl Algebra, 2007,210:437445.
  • 4YANG Xiao Yan,LIU Zhong Kui. Strongly Gorenstein projective, injective and flat modules [ J]. J Algebra, 2008, 320:2659-2674.
  • 5ENOCHS E E,JENDA O M G, XU Jing Zhong. Foxby duality and Gorenstein injective and projective modules[ J]. TransAmer Math Soc, 1996,384:3223-3234.
  • 6朱占敏.有限拟内射模(英文)[J].山东大学学报(理学版),2010,45(10):20-23. 被引量:1
  • 7ENOCHS E E,JENDA O M G. Relative homological algebra[M]// de Gruyter Expositions in Mathematics: Vol 30. Berlin:Walter de Gruyter, 2000.
  • 8ENOCHS E E,JENDA O M G. β-Gorenstein projective and flat covers and i7-Gorenstein injective envelopes [J]. CommAlgebra, 2004, 32:1453-1470.

二级参考文献6

  • 1RAMAMURTHI V S, RANGASWAMY K M. On finitely injective modules [J]. J Austral Math Soc, 1973,16:239-248.
  • 2ZELMANOWITZ J M. Regular modules [J]. Trans A M S, 1972,163:341-355.
  • 3NICHOLSON W K, PARK J K, YOUSIF M F. Principally Quasi-injective Modules [J].Comm Algebra, 1999, 27 (4) : 1683-1693.
  • 4IKEDA M, NAKAYAMA T. On some characteristic properties of quasi-Frobenius and regular rings[J]. Proc A M S, 1954, 5:15-19.
  • 5ALBU T, WISBAUER R. Kasch Modules, Advances in Ring Theory[M]. Boston: Birkhauser, 1997: 1-16.
  • 6NICHOLSON W K, YOUSIF M F. On a theorem of camillo [J]. Comm Algebra, 1995, 23(14) :5309-5314.

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部