摘要
设二次函数f(x)=∑1≤i≤kaix1+2αi,k<n/2,x∈F2nai∈F2m,m|n。若f(x)的伴随多项式f'(z)有f'(z)≡g(z)·g*(z)(modzn+1)的分解形式,则可给出一种计算二次函数指数和S(f(x),n)=∑x∈F2n(-1)Tr(f(x))的新方法,其中Tr(·)是从F2n到F2的迹函数,g*(z)为g(z)的互反多项式。通过这种方法,可将一类二次函数指数和简化为可计算函数的指数和。
Let f(x)=1≤i≤k∑aix1+2ai,k〈n/2,x∈F2nai∈F2m, m|n be a quadratic function. If the companion polynomial off(x) has the particular factorization of f'(z)有f'(z)≡g(z)·g*(z)(modzn+1), a new method to compute the exponential sum S(f(x),n)=x∈F2n∑(-1)Tr(f(x)) was obtained, where Tr( ·) is the trace function from F2n to F2, and g* (z) is the reciprocal polynomial of g(z). By this method, the computation of the exponential sums of a large class of quadratic function can be converted to the present result which can be explicitly evaluated.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2013年第3期24-30,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(60803154)
关键词
二次函数
指数和
伴随多项式
互反多项式
binary quadratic function
exponential sums
companion polynomial
reciprocal polynomial