期刊文献+

非Lipschitz条件下C_h-空间中立型随机泛函微分方程解的存在惟一性 被引量:3

Existence and uniqueness of the solution to neutral stochastic functional differential equations under non-Lipschitz conditions with infinite delay at phase space C_h
原文传递
导出
摘要 研究了Ch-空间中具有无穷时滞的中立型随机泛函微分方程,利用Picard迭代法给出了非Lipschitz条件下其解的存在惟一性。 The existence and uniqueness of the solution to neutral stochastic functional differential equations with infinite delay at phase space ( Ch, |·| h ) under non-Lipschitz conditions on the coefficients was proved by means of the Picard approximations.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第3期73-79,共7页 Journal of Shandong University(Natural Science)
关键词 中立型随机泛函微分方程 Ch-空间 非LIPSCHITZ条件 neutral stochastic functional differential equations phase space Ch non-Lipschitz conditions
  • 相关文献

参考文献2

二级参考文献7

  • 1Mao X.Stochastic Differential Equations and Applications[M].London:Horword,1997.
  • 2Wei Fengying,Wang Ke.The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay[J].Math.Anal.and Appl.,2006:171-188.
  • 3Mao X.Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equation[J].SIAM.J.Math.Ananl.,1997,28:389-401.
  • 4Mao X.Exponential stability in mean square of neutral stochastic differential functional equations[J].Systems Control Letters,1995,26:245-251.
  • 5Mao X.Asymptotic properties of neutral stochastic differenrial delay equations[J].Stoch.Stoch.Rep.2000,68:273-295.
  • 6Liu Kai,Xia Xuewen.On the exponential stability in mean square of neutral stochastic functional differential equations[J].System and Control Letters,1999,37:207-215.
  • 7秦衍,夏宁茂,高焕超.非线性随机微分方程终值问题的适应解和连续依赖性[J].应用概率统计,2007,23(3):273-284. 被引量:5

共引文献9

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部