期刊文献+

基于改进投影寻踪技术和模糊神经网络的未受精种蛋检测模型 被引量:1

Detection model of un-fertilized egg based on improved projection pursuit and fuzzy neural network
下载PDF
导出
摘要 考虑基于计算机视觉技术的未受精种蛋无损检测中特征参数之间关系的复杂性和模糊性等因素,提出了一种基于改进投影寻踪模型和模糊神经网络相结合,作为种蛋是否受精品质归属的决策系统.利用量子投影寻踪技术对种蛋图像的复杂形状特征向量进行提取降维,给出了计算最佳投影方向的一种改进量子遗传算法;并且利用模糊神经网络的自动学习决策推理规则,实现了种蛋是否受精品质归属的无损检测.结果表明:该模型速度快且稳定,精度高且鲁棒性好,简单易于实现,精度达到99.37%,满足实际检测要求. To overcome the complexity and ambiguity of non-destructive detection characteristics for unfertilized eggs based on computer vision technology, an improved projection pursuit method combined with fuzzy neural network was proposed to decide whether the eggs were fertilized. The feature vector of complex shape of egg images was extracted to reduce the dimensionality by quantum projection pursuit technology. An improved quantum genetic algorithm was established to calculate the best projection direction. The non-destructive detection method was realized to diagnose whether the eggs were fertilized based on automatic decision inference rule of fuzzy neural network. The results show that the proposed method can meet actual testing requirements with high speed, good stability and robustness, and the accuracy can reach 99.37%.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期171-177,共7页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(51177165) 中国农业大学博士创新基金资助项目(2012YJ112) 黑龙江省农垦总局科技攻关项目(HNK11AZD-07-07)
关键词 种蛋检测 投影寻踪 量子遗传算法 模糊神经网络 特征提取 hatch egg identification projection pursuit quantum genetic algorithm fuzzy neural network feature extraction
  • 相关文献

参考文献14

二级参考文献141

共引文献161

同被引文献46

  • 1Deng Li, Yu Dong. Deep learning for signal and infor- mation processing[ R]. Microsoft Research, 2013.
  • 2胡晓林,朱军.深度学习——机器学习领域的新热点[J].中国计算机学会通讯,2013,9(7):64—69.
  • 3Bengio Yoshua. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2009,2 (1): 1 -27.
  • 4Duarte-Carvajalino J M, Yu G S, Carin L, et al. Task- driven adaptive statistical compressive sensing of gaussi- an mixture models [ J J. IEEE Transactions on Signal Processing, 2013, 61(3): 585-600.
  • 5Abdel-Rahman E M, Mutanga O, Adam E, et al. De- tecting sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers [ J ]. 1S- PRS Journal of Photogrammetry and Remote Sensing, 2014, 88:48-59.
  • 6Sarikaya R,Hinton G E, Deoras A. Application of deepbelief networks for natural language understanding [ J ],IEEE Transactions on Audio,Speech and Language Pro-cessing,2011, 22(4) : 778 -784.
  • 7Fischer A, Igel C. Training restricted Boltzmann ma-chines :an introduction [ J ] . Pattern Recognition, 2014,47(1) :25 -39.
  • 8Wan L,Zeiler M,Zhang S X,et al. Regularization ofneural networks using dropconnect[C] //Proceedings ofthe 30th International Conference on Machine Learning.AUanta:IMLS, 2013: 2095 -2103.
  • 9Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks[ C] //Proceedings of 20thAnnual Conference on Neural Information Processing Sys-tems. Vancouver : Neural information processing systemfoundation,2007 : 153 - 160.
  • 10Palm R B. Prediction as a candidate for learning deephierarchical models of data[ D]. Technical University ofDenmark, Denmark,2012.

引证文献1

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部