期刊文献+

模n剩余类环的零因子图的补图的类数 被引量:2

Genus of complement of zero-divisor graph for residue class modulo n
下载PDF
导出
摘要 研究了模n剩余类环Ζn的零因子图的补图的类数.通过讨论n的素因子个数,利用完全图、完全二部图的类数公式以及有关类数的下界公式和嵌入技巧,证明了模n剩余类环Ζn的零因子图的补图的类数不超过5,当且仅当n=6,8,10,12,14,15,16,18,20,21,22,27,33,35,55,77,p2,其中p为素数.并且分类了模n剩余类环Ζn的零因子图的补图的类数分别为0,1,2,3,4,5的情形. The genus of complement of zero-divisor graph for residue class modulo n was investigated. According to the prime numbers of n, the genus formulae of complete graph and complete bipartite graph, lower bound of genus graphs and some embedding technique, the genus of complement of zero-divisor graph of residue class modulo n was proved not more than 5 if and only if n equalled to 6,8,10,12,14, 15,16,18,20,21,22,27,33,35,55,77,f. The p meant prime. The classification was completely realized when the genera of complement of zero-divisor graph for residue class modulo n were 0,1,2,3,4,5, respectively.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期244-248,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(11161006) 广西自然科学基金资助项目(2010GXNSFB013048)
关键词 零因子图 子图 补图 完全图 类数 zero-divisor graph subgraph complement complete graph genus
  • 相关文献

参考文献13

  • 1White A T. Graphs, Groups and Surfaces [ M]. USA : North-Holland Mathematics Studies, 1984.
  • 2Anderson D F, Livingston P S. The zero-divisor graph of a commutative ring[J]. Journal of Algebra, 1999, 217: 434 - 447.
  • 3Visweswaran S. Some results on the complement of the zero-divisor graph of a commutative ring[ J ]. Journal of Algebra and Its Applications, 2011, 10 (3) : 573 -595.
  • 4LaGrange J D. Complemented zero-divisor graphs and Boolean rings[J]. Journal of Algebra,2007, 315:600 -611.
  • 5Akbari S, Maimani H R, Yassemi S. When a zero-divi- sor graph is planar or a completer r-partite graph [J]. Journal of Algebra, 2003, 270:169 - 180.
  • 6Belshoff R, Chapman J. Planar zero-divisor graphs[ J ]. Journal of Algebra, 2007,316 : 417 -480.
  • 7Wang H J. Zero-divisor graphs of genus one[ J]. Jour- hal of Algebra, 2006,304 : 666 - 678.
  • 8Wichham C. Classification of rings with genus one zero- divisor graphs[J]. Communications in Algebra, 2008, 36 : 325 - 345.
  • 9Chiang-Hsiem H J, Smith N O, Wang H J. Commuta- tive rings with toroidal zero-divisor graphs [ J]. Houston Journal of Mathematics, 2010,36 ( 1 ) : 1 - 31.
  • 10Bloomfield N, Wiehham C. Local rings with genus two zero-divisor graphs [ J ]. Communications in Algebra, 2010,38 : 2965 - 2980.

二级参考文献11

  • 1Akbari S,Maimani H R,Yassemi S.Where a zero-divisivor graph is planar or a complete r-partite graph[J].J Algebra,2003,270:169-180.
  • 2Smith N O.Planar zero-divisor graph[J].InternationalJ Commutative Rings,2003,2(4):177-188.
  • 3Wang H J.Zero-divisor graphs of genus one[J].J Algebra,2006,304(2):666-678.
  • 4Wickham C.Classification of rings with genus one zero-divisor graphs[J].Communications in Algebra,2008,36:325-345.
  • 5Wickham C.Rings whose zero-divisor graphs have positive genus[J].J Algebra,2009,3212:377-383.
  • 6Chiang-Hsieh H J,Wang H J.Commutative rings with toroidal zero-divisor graphs[J].Houston Journal of mathematics(to appear).
  • 7Harary F.Graph theory[M].Addison-Wesley Publishing Co,Reading Massachusetts,1972.
  • 8Huang Yao-Hsuan.Zero-divisor graphs of higher genus[D].Master's Thesis of Department of Mathematics National Chung Cheng University,2007.
  • 9Su H D,Tang G H.The prime spectrum and zero-divisors of Zn[K].Guangxi Teachers Education University,2006,23(4):1-6.
  • 10Tang G H,Su H D.The properties of zero-divisor graph of Zn[K].Guangxi Normal University,2007(3):32-35.

共引文献1

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部