摘要
研究了模n剩余类环Ζn的零因子图的补图的类数.通过讨论n的素因子个数,利用完全图、完全二部图的类数公式以及有关类数的下界公式和嵌入技巧,证明了模n剩余类环Ζn的零因子图的补图的类数不超过5,当且仅当n=6,8,10,12,14,15,16,18,20,21,22,27,33,35,55,77,p2,其中p为素数.并且分类了模n剩余类环Ζn的零因子图的补图的类数分别为0,1,2,3,4,5的情形.
The genus of complement of zero-divisor graph for residue class modulo n was investigated. According to the prime numbers of n, the genus formulae of complete graph and complete bipartite graph, lower bound of genus graphs and some embedding technique, the genus of complement of zero-divisor graph of residue class modulo n was proved not more than 5 if and only if n equalled to 6,8,10,12,14, 15,16,18,20,21,22,27,33,35,55,77,f. The p meant prime. The classification was completely realized when the genera of complement of zero-divisor graph for residue class modulo n were 0,1,2,3,4,5, respectively.
出处
《江苏大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2013年第2期244-248,共5页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(11161006)
广西自然科学基金资助项目(2010GXNSFB013048)
关键词
零因子图
子图
补图
完全图
类数
zero-divisor graph
subgraph
complement
complete graph
genus