期刊文献+

基于神经网络和模糊理论的心功能辅助诊断专家系统 被引量:5

COMPUTER-AIDED DIAGNOSIS SYSTEM FOR HEART FUNCTION BASED ON ARTIFICIAL NEURAL NETWORKS AND FUZZY THEORY
下载PDF
导出
摘要 通过对大量心脏病典型病例之超声心动图指标参量进行分析与总结 ,并结合专家经验 ,提出了一种对心功能进行全面、定量分级的客观方法 ,采用将神经网络技术与模糊理论相结合的方法 ,研制出心功能辅助诊断专家系统 .该系统具有在线学习能力、可扩充性和较强的容错能力 .临床实验结果正确率达到 90 .7% 。 WT5”BZ]In this paper,a computer aided diagnosis system for heart function based on artificial neural networks and fuzzy logic is introduced.Sensitive parameters reflecting heart function,provided by echocardiography,were used as input of neural networks and their corresponding heart function as output.To obain an analytic and discrimination model closer to brain,we combined fuzzy theory with neural network technology.In our research input parameters were fuzzzily treated.During distinguishing the type of illness,we used fuzzy interval,fuzzy number and possibility distribution concepts,and got its corresponding membership.Meanwhile the membership was divided into interval of linguistic consisting with language expression.The selected network was BP,and back propagation algorithm was used to train the network.After studying the result evaluated by experts,the neural network was used to appreciate 150 testees heart function,of which 90.7 % was consistent with experts diagnosis. [WT5”HZ]
出处 《天津大学学报(自然科学与工程技术版)》 CSCD 2000年第5期610-614,共5页 Journal of Tianjin University:Science and Technology
基金 教育部博士点科研基金!(960 0 561 4 )
关键词 心功能 专家系统 神经网络 超声心动图 heart function expert system neural network fuzz theory echocardiography
  • 相关文献

参考文献6

  • 1 栗载福,谢正详,等.模糊数学与医学[M].重庆:科学技术文献出版社重庆分社,1989.
  • 2秦明新,曹彤,鲍洪涛,董秀珍,臧益民.评价心脏功能的人工神经网络方法[J].中国生物医学工程学报,1995,14(2):176-177. 被引量:1
  • 3秦明新 等.收缩时间间期检测心功能的微机自动评定[J].第四军医大学学报,1995,14(2):123-126.
  • 4 Menendez C,Ordieres J B,et al.Importance of information pr e-processing in theimprovement of neural network result[J].Expert system,1 996,13(2):95~102.
  • 5 Chen Ziqiang.Fuzzy temporal reasoning for process supervision [J].Expertsystem,1995,12(2):123~137.
  • 6 Semeer Bataineh,et al.An expert system for unit commitment and demand predictionusing fuzzy logic and neural network[J].Expert system,199 6,13(1):29~39.

共引文献2

同被引文献57

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部