期刊文献+

毕达哥拉斯正交与内积空间的一个特征性质

Pythagorean orthogonality and characterization of inner product spaces
下载PDF
导出
摘要 为研究毕达哥拉斯正交与内积空间之间的关系,证明了满足蕴含关系x,y∈Sx,x⊥Iy■‖x+y‖=2且维数不小于3的实赋范线性空间是内积空间,从而证明一个维数不小于3且满足蕴含关系x,y∈Sx,x⊥py■x⊥p(-y)的赋范线性空间X是一个内积空间. This paper explored the relationship between Pythagorean orthogonality and inner product spaces. It was proved that a real normed linear space, whose dimension was at least 3, satisfied the implication: x,y∈S;x⊥ry→||x+y||=√2 was an inner product space. As a corollary, it was shown that a normed linear space whose dimension was at least 3 and satisfied the implication x,y∈Sx,x⊥py→x⊥p(-y), was an inner product space.
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2013年第1期122-124,共3页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 国家自然科学基金(11171082) 哈尔滨理工大学优博优硕培育计划资助项目(HLGYCX2011-022)
关键词 内积空间 等腰正交 赋范线性空间 毕达哥拉斯正交 inner product space isosceles orthogonality normed linear space Pythagoreanorthogonality
  • 相关文献

参考文献5

  • 1CHELIDZE G Z. On Nordlander' s Conjecture in The Three - dimensional Case[J]. Ark. Mat. , 2009, 47(2) : 267 -272.
  • 2NORDLANDER G. The Modulus of Convexity in Normed Linear Spaces[J]. Ark. Mat., 1960, 4(2): 15 -17.
  • 3ALONSO J, BEN TEZ C. Some Characteristic and Non - charac- teristic Properties of Inner Product Spaces[ J]. J. Approx. Theo- ry, 1988, 55(3) : 318 -325.
  • 4ALONSO J. Uniqueness Properties of Isosceles Orthogonality in Normed Linear Spaces[J]. Ann. Sei. Math. Quebec, 1994, 18 (1): 25 -38.
  • 5吴森林,计东海.关于非方常数问题的一个反例[J].应用泛函分析学报,2006,8(2):149-154. 被引量:5

二级参考文献4

  • 1Ren Z D,Rao M M.Applications of Orlicz Spaces[M].Marcel Dekker,Inc,2002.
  • 2Ji Donghai,Zhan Dapeng.Some equivalent representations of nonsquare constants and its applications[J].Northeast Math J,1999,15(4):439-444.
  • 3Gao J,Lau K S.On the geometry of spheres in normed linear spaces[J].Austral Math Soc,1990,A48:101-112.
  • 4定光桂.Banach空间引论[M].北京:科学出版社,1999.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部