期刊文献+

l^k,8-Singular values and spectral radius of rectangular tensors 被引量:1

l^k,8-Singular values and spectral radius of rectangular tensors
原文传递
导出
摘要 The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real nonnegative partially symmetric rectangular tensors. We first introduce the concepts of/k,S-singular values/vectors of real partially symmetric rectangular tensors. Then, based upon the presented properties of lk,S-singular values /vectors, some properties of the related /k'S-spectral radius are discussed. Furthermore, we prove two analogs of Perron-Frobenius theorem and weak Perron-Frobenius theorem for real nonnegative partially symmetric rectangular tensors. The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real nonnegative partially symmetric rectangular tensors. We first introduce the concepts of/k,S-singular values/vectors of real partially symmetric rectangular tensors. Then, based upon the presented properties of lk,S-singular values /vectors, some properties of the related /k'S-spectral radius are discussed. Furthermore, we prove two analogs of Perron-Frobenius theorem and weak Perron-Frobenius theorem for real nonnegative partially symmetric rectangular tensors.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第1期63-83,共21页 中国高等学校学术文摘·数学(英文)
关键词 Nonnegative rectangular tensor /k S-singular value /k'S-spectralradius IRREDUCIBILITY weak irreducibility Nonnegative rectangular tensor, /k,S-singular value, /k'S-spectralradius, irreducibility, weak irreducibility
  • 相关文献

参考文献17

  • 1Chang K C, Pearson K, Zhang T. Perron Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6:507520.
  • 2Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370:28294.
  • 3Dahl D, Leinass J M, Myrheim J, E. Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420:711 725.
  • 4Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 47:777-780.
  • 5Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438:738 749.
  • 6Gaubert S, Gunawardena J. The Perron-Frobenius theorem for homogeneous, monotone functions. Trans Amer Math Soc, 2004, 356:4931-4950.
  • 7Knowles J K, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity, 1975, 5:341-361.
  • 8Knowles J K, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal, 1977, 63:321-336.
  • 9Krein M G, Rutman M A. Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat Nauk, 1948, 3(1): 23 (in Russian); Amer Math Soc Transl, No 26 (English transl).
  • 10Lim L -H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationM Workshop on Computational Advances in Multi- Sensor Adaptive Processing, 1. 2005, 129-132.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部