期刊文献+

Sparse Representation for Face Recognition Based on Constraint Sampling and Face Alignment 被引量:6

Sparse Representation for Face Recognition Based on Constraint Sampling and Face Alignment
原文传递
导出
摘要 Sparse Representation based Classification (SRC) has emerged as a new paradigm for solving recognition problems. This paper presents a constraint sampling feature extraction method that improves the SRC recognition rate. The method combines texture and shape features to significantly improve the recognition rate. Tests show that the combined constraint sampling and facial alignment achieves very high recognition accuracy on both the AR face database (99.52%) and the CAS-PEAL face database (99.54%). Sparse Representation based Classification (SRC) has emerged as a new paradigm for solving recognition problems. This paper presents a constraint sampling feature extraction method that improves the SRC recognition rate. The method combines texture and shape features to significantly improve the recognition rate. Tests show that the combined constraint sampling and facial alignment achieves very high recognition accuracy on both the AR face database (99.52%) and the CAS-PEAL face database (99.54%).
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第1期62-67,共6页 清华大学学报(自然科学版(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.60772047and61101152) the National Science & Technology Pillar Program during the Eleventh Five-year Plan Period(No.2006BAK08B07) the Chuanxin Foundation from Tsinghua University(No.110107001)
关键词 CLASSIFICATION face recognition feature extraction face alignment classification face recognition feature extraction face alignment
  • 相关文献

参考文献20

  • 1M . Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience, vol. 3, no. 1, pp.71-86, 1991.
  • 2M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, Face recognition by independent component analysis, 1EEE Trans. Neural Networks, vol. 13, no. 6, pp. 1450-1464, 2002.
  • 3B. Takacs, Comparing face images using the modified Hausdorff distance, Pattern Recognition, vol. 31, no. 12, pp. 1873-1881, 1998.
  • 4L. Wiskott, J. M. Fellous, N. Kruger, and C. V. D. Malsburg, Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 775-779, 1997.
  • 5O. Deniz, M. Castrillon, and M. Hernandez, Face recognition using independent component analysis and support vector machines, Pattern Recognition Letters, vol. 24, no. 13, pp. 2153-2157, 2003.
  • 6E N. Belhumeur and D. J. Kriegman, What is the set of images of an object under all possible illumination conditions, Int. Journal of Computer Vision, vol. 28, no. 3, pp. 245-260, 1998.
  • 7J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210-227, 2009.
  • 8E. J. Candes and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Progressing Magazine, vol. 25. no. 2. oo. 21-30. 2008.
  • 9K. C. Lee, J. Ho, and D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp. 684-698, 2005.
  • 10A. Martinez and R. Benavente, The AR face database, CVC Tech. Report, vol. 24, 1998.

同被引文献31

  • 1王元珍,王健,李晨阳.一种改进的模糊聚类算法[J].华中科技大学学报(自然科学版),2005,33(2):92-94. 被引量:18
  • 2李侃,廖启征.基于S3C2410平台与嵌入式Linux的图像采集应用[J].微计算机信息,2006(03Z):125-127. 被引量:30
  • 3王和勇,郑杰,姚正安,李磊.基于聚类和改进距离的LLE方法在数据降维中的应用[J].计算机研究与发展,2006,43(8):1485-1490. 被引量:31
  • 4BRUNELLI R, POGGIC T. Face recognition: featmes ve- rsus templates [J]. IEEE Transactions on PAMI, 199.3,10 (15), 1042-1052.
  • 5CHELLAPPA R, WISLSON C L, SIROHEY S. Human a.d machine recognition of faces: a survey [C]. Proceedings o{" the IEEE, 1995,83(5), 705-741.
  • 6VAPNIKVN.统计学习理论的本质[M1.张学工.译.北京:清华大学出版社,2000.
  • 7CHANG K P, TEA J K. Objective rating of seam pucker using neural networks[J1. Textile Research Journal, 1997.67 (7) :494-502.
  • 8ROWEIS S T, SAUL L K. Nonlinear dimensionality re&c- tlon by locally linear embedding [J]. Science, 2000, 290 (5500) : 2323 -2326.
  • 9SAUL L K, ROWEIS S T. Think globally, fit locally: un supervised learning of low dimensional manifolds [J]- J,m- nal of Machine Learning Research, 2003,4(12) : 119-155.
  • 10THEODORIDISS.KOUTROUMBASK.模式识别(第3版)[M].李晶娇,王爱侠,张广源,译.北京:电子工业出版社.2006.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部