期刊文献+

土壤气相抽提过程中多孔介质扰动的数值分析 被引量:1

Numerical analysis of the the changes of porous media during soil vapor extraction
下载PDF
导出
摘要 基于质量守恒与流体达西定律推导水气二相流动的连续性微分方程,进而结合饱和度~相对渗透率~毛细压力耦合关系构建二相流动数学模型,并建立多孔介质孔隙度变化与水气二相饱和度之间的数学关系,最终实现多孔介质扰动时空变化的定量表征.案例模拟分析结果表明:对于特定场地而言,抽提影响带的空间形态与抽提真空度密切相关,抽提真空度越大,影响半径及影响带内的气流速度越大,本案例中抽提真空度在11kPa和31kPa时的抽提影响半径分别达到8.5m和9m;在抽提过程中,孔隙度及渗透率随时间呈现先增加后稳定的显著变化,达到稳定所需的时长及其变幅则与离抽提段的空间距离成反相关,抽提压力为0.7 105Pa、特征参数C=0.8的情景模拟显示:距离抽提段1m的P1点在约40min后孔隙度达到稳定、增幅为0.0387,而较远的P4点,距抽提段水平距离为3m,约在60min后达到稳定、增幅为0.0031,相应地,P1和P4点介质渗透率分别从1.18×10-11m2增加至2.22×10-11与1.25×10-11m2;在相同抽提压力下,孔隙度增幅与关键参数C值成正相关,抽提压力为0.9×105Pa、C=0.1和0.8时的孔隙度最大增幅分别约为0.009和0.055;相同参数C条件下,孔隙度增幅与抽提压力成正相关,C=0.8、抽提压力为0.7×105Pa时的孔隙度最大增幅则达到0.066. Numerical method was developed to study the change of porous media caused by physical air perturbation during soil vapor extraction (SVE). This method incorporates a water-air two phase flow model to estimate dynamics of the saturation, the relative permeability and capillary pressure during SVE, and varations of porosity is interacted based on its relationship with the saturation in the two phase flow model. Then an application of this method is shown for a field SVE case. The results reveal that the influence radius of a single SVE welt were up to 8.5m and 9m at the extraction pressure of 0.9~105 Pa and 0.7x105 Pa respectively. That indicates influence radius is proportional to the extraction vacuum for a specified site. Both the porosity and permeability increased abruptly after SVE beginning and a steady state was then gradually achieved, whilst the increases induced in vadose zone weakens with distance and the time need to reach a peak delayed with increasing distance from the SVE screen. In this case, △Ф at P1 and P4 reached the maximum of 0.0387 in 40 min and 0.0031 in 60 min respectively, whilst the permeability at P1 and P4 increased from 1.18×10^11 m^2 to 2.22×10^-11 m^2 and 1.25×10^-11 m^2 correspondingly in such simulation scenario with the extraction pressure of 0.7E5Pa and parameter C =0.8. In addition, changes of porosity and permeability were suggested to be proportional to C value and extraction vacuum. The maximum △Ф were up to 0.009 (at C =0.1) and 0.055 (at C =0.8) under the same extraction pressure of 0.9×10^5 Pa, while it was up to 0.066 under the scenario with the extraction pressure of0.7×10^5 Pa and C =0.8.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2013年第3期448-454,共7页 China Environmental Science
基金 中国科学院东北水项目群项目(KZCX2-YW-Q06-2) 国家"863"项目(2007AA06Z343)
关键词 土壤气相抽提 二相流动 多孔介质 扰动 数学模型 soil vapor extraction two phase flow porous media, perturbation, numerical modeling
  • 相关文献

参考文献19

  • 1Reddy K R. Technical Challenges to in-situ remediation of polluted sites [J]. Geotechnical and Geological Engineering, 2010,28(3):211-2211.
  • 2骆永明.中国污染场地修复的研究进展、问题与展望[J].环境监测管理与技术,2011,23(3):1-6. 被引量:202
  • 3Rogers S W, Ong S K. Inflence of porous media, airflow rate, and air channel spacing on benzene NAPL removal during air sparging [J]. Environmental Science and Technology, 2000,34(5): 764-770.
  • 4Qin C Y, Zhao Y S, Zheng W, et al. Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction [J]. Journal of Hazardous Materials, 2010,176(1-3): 294-299.
  • 5范伟,杨悦锁,路莹,杜新强,张加双,宋晓明.层间地下水污染曝气修复的影响带[J].化工学报,2011,62(9):2600-2607. 被引量:2
  • 6Davis G B, Patterson B M, Johnston C D. Aerobic bioremediation of 1, 2 dichlomethane and vinyl chloride at field scale [J]. Journal of Contaminant Hydrology, 2009, 107(1-2):91 - 100.
  • 7Kao C M, Chen C Y, Chen S C, et al. Application of insitu biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation [J]. Chemosphere, 2008,70(8):1492- 1499.
  • 8Soares A A, Pinho M T, Albergaria J T, et al. Sequential application of soil vapor extraction and bioremediation processes for the remediation of ethylbenzen4 Air, and Soil Pollution, 2012, DOI: -contaminated soils [J]. Water, 10.1007/sl 1270-011-1051-y.
  • 9Hoier C K, Sonnenborg T O, Jensen K H, et al. Model analysis of mechanisms controlling pneumatic soil vapor extraction [J]. Journal of Contaminant Hydrology, 2009,103(3-4):82-98.
  • 10Albergaria J T, Alvim-Ferrza M da C, Delerue-Matos C. Soil vapor extraction in sandy soils: Influence of airflow rate [J]. Chemosphere, 2008,73(9): 1557-1561.

二级参考文献32

  • 1吕玉麟,相天章.稠油松散岩心相对渗透率曲线的最优化算法[J].力学学报,1995,27(1):93-98. 被引量:7
  • 2唐海行,苏逸深.考虑气压势影响的降雨入渗数值模拟研究[J].水科学进展,1996,7(1):8-13. 被引量:15
  • 3王志强,武强,邹祖光,陈红,杨询昌,赵季初.地下水石油污染曝气治理技术研究[J].环境科学,2007,28(4):754-760. 被引量:22
  • 4郑艳梅,李鑫钢,黄国强.地下水曝气过程中空气流场的数学模拟[J].化工学报,2007,58(5):1277-1282. 被引量:10
  • 5骆永明.中国土壤环境和土壤修复科学技术研究现状与展望[R]//中国科技协会.土壤学学科发展报告.北京:中国科学技术出版社,201l:134-136.
  • 6LUO Y M,CHEN M F,SONG J,et al.Proceedings of the 1st international workshop on site remediation:policies,technologies and financing mechanism[C].Nanjing,2010.
  • 7LUO Y M,JAPENGA J,MCGRATH S P,et al.Proceedings of SoilRem 2008[C]//The 3 rd international conference on soil pollution and remediation.Nanjing,2008.
  • 8Milly C D. Advances in modeling of water in the unsaturated zone [J]. Transport in Porous Media,1988, 3(2):491 -514.
  • 9Weir G J, Kissling W M. The influence of airflow on the vertical infiltration of water into soil[J]. Water Resource Research, 1992, 28(10):2 765 - 2 772.
  • 10Whitaker S A. Flow in porous media Ⅱ: the governing equation for immiscible, two-phase flow[J]. Transport in Porous Media, 1986, 23(1):105 - 125.

共引文献207

同被引文献16

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部