期刊文献+

NAND gate with quantum dot-semiconductor optical amplifiers-based Mach-Zehnder interferometer 被引量:1

NAND gate with quantum dot-semiconductor optical amplifiers-based Mach-Zehnder interferometer
原文传递
导出
摘要 The NAND operation at 250 Gbit/s based on quantum dot-semiconductor optical amplifiers (QD-SOAs) is modeled. By solving the rate equations of SOAs in the form of a Mach-Zehnder interferometer (MZI), the performance of NAND gate is numerically investigated. The model takes the effects of ampli?ed spontaneous emission (ASE) and the input pulse energy on the system's quality factor into account. Results show that NAND gate in QD-SOA-MZI based structure is feasible at 250 Gbit/s with a proper quality factor. The decrease in quality factor is predicted for high spontaneous emission factor (NSP). For an ideal amplifier (NSP = 2), the Q-factor is 17.8 for 30 dB gain. The NAND operation at 250 Gbit/s based on quantum dot-semiconductor optical amplifiers (QD-SOAs) is modeled. By solving the rate equations of SOAs in the form of a Mach-Zehnder interferometer (MZI), the performance of NAND gate is numerically investigated. The model takes the effects of amplified spontaneous emission (ASE) and the input pulse energy on the system's quality factor into account. Results show that NAND gate in QD-SOA-MZI based structure is feasible at 250 Gbit/s with a proper quality factor. The decrease in quality factor is predicted for high spontaneous emission factor (Nsp). For an ideal amplifier (Nsp -- 2), the Q-factor is 17.8 for 30 dB gain.
作者 Amer Kotb
出处 《Optoelectronics Letters》 EI 2013年第2期89-92,共4页 光电子快报(英文版)
  • 相关文献

参考文献14

  • 1N. K. Dutta and Q. Wang, Semiconductor Optical Am- plifiers, World Scientific, New York, 2006.
  • 2T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramo- poulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkh- ard and R. Dall'Ara, Electronics Letter 35, 1650 (1999).
  • 3C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Statho- poulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann and R. Dall'Ara, IEEE Photonics Technology Letters 12, 834 (2000).
  • 4T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coque- lin, I. Guillemot, E Gaborit, F. Poingtand, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt and M. Renaud, Electronics Letter 36, 1863 (2000).
  • 5H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Picciril- liand and N. K. Dutta, Electronics Letter 38, 1271 (2002).
  • 6F. Ginovart and J. C. Simon, Optics A Pure Applied Optics 4, 283 (2002).
  • 7M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe and H. Ishikawa, Meas. Sci. Technol. 13, 1683 (2002).
  • 8H. Sun, Q. Wang, H. Dong and N. K. Dutta, Microwave and Optical Technology Letters 48, 29 (2006).
  • 9S. Ma, Z. Chen, H. Sun and N. K. Dutta, Optics Express 18, 6417 (2010).
  • 10A. Kotb, S. Ma, Z. Chen, N. K, Dutta and G. Said, Op- tics Communications 284, 5798 (2011).

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部