期刊文献+

Anomaly Detection Based on Multi-Detector Fusion Used in Turbine 被引量:1

Anomaly Detection Based on Multi-Detector Fusion Used in Turbine
下载PDF
导出
摘要 In order to improve the gas turbine engine health monitoring capability, using multiple detector fusion method in the monitoring system of gas turbine data monitor. Multi detector frame fusion includes point bias anomaly detector, contextual bias anomaly detector and collective bias anomaly detector, common to analyze the new arrival data, and the possible abnormal state to vote and weighted statistics as a result output. The experimental results show the method can effectively detect the mutation phenomenon, relatively slow changes and abnormal behavior discordant to the conditions. The framework applied to the gas turbine engine can effectively enhance the health diagnosis ability, will be highly applied for real industry. In order to improve the gas turbine engine health monitoring capability, using multiple detector fusion method in the monitoring system of gas turbine data monitor. Multi detector frame fusion includes point bias anomaly detector, contextual bias anomaly detector and collective bias anomaly detector, common to analyze the new arrival data, and the possible abnormal state to vote and weighted statistics as a result output. The experimental results show the method can effectively detect the mutation phenomenon, relatively slow changes and abnormal behavior discordant to the conditions. The framework applied to the gas turbine engine can effectively enhance the health diagnosis ability, will be highly applied for real industry.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第1期113-117,共5页 哈尔滨工业大学学报(英文版)
基金 Sponsored by the National Science Fundation for Distinguished Young Scholars of China(Grant No.50925625)
关键词 FUSION industry data anomaly detection fusion industry data anomaly detection
  • 相关文献

参考文献11

  • 1Hilbert M, Lopez P. The world technological capacity to store, communicate, and compute information. Science, 2011, 332(10) :60 -65.
  • 2Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann Pub, 2011.45 -51.
  • 3Chandola V, Banerjee A, Kumar V. Anomaly detection a survey. ACM Computing Surveys, 2009, 41 (3) : 1511 - 1558_.
  • 4Hodge V, Austin J. A survey of outlier detection method- ologies. Artificial Intelligence Review, 2004, 22 (2) : 85 - 126.
  • 5Lazarevic A, Ertoz L, Kumar V, et al. A comparative study of anomaly detection schemes in net-work intrusion detection. Proceedings of SIAM International Conference on Data Mining. Quebec : SIAM, 2003. 25 - 36.
  • 6Li Y G. Performance-analysis-based gas turbine diagnostics : a review. Journal of Power and Energy, 2002, 216(5) : 363 -377.
  • 7Edwards S, Lees A W, Friswel M I. Fault diagnosis of rota- ting machinery. Shock and Vibration, 1998, 30(1) :4 - 13.
  • 8Depold H R, Gass F D. The application of expert systems and neural networks to gas turbine prognostics and diagnostics. Journal of Engineering for Gas Turbines and Power, 1999, 121 (4) :607 -612.
  • 97 Rajeev V, Niranjan R, Ranjan G. Gas turbine diagnostics using a soft computing approach. Applied Mathematics and Computations, 2006,172 (2) : 1342 - 1363.
  • 10Breunig M M, Kriegel H P, Ng R T, et al. LOF: identifying density-based local outliers. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, 29(2) :93 - 104.

同被引文献16

  • 1汪雪飞,杨建明.PG6551B燃机排气分散度大故障的分析与处理[J].燃气轮机技术,2004,17(2):58-61. 被引量:4
  • 2LEE Y K, MAVRIS D N, VOLOVOI V V, et al. A fault di- agnosis method for industrial gas turbines using Bayesian data analysis [ J 1. Journal of Engineering for Gas Turbines and Power, 2010, 132(4): 041602.
  • 3LI Y G. Performance analysis based gas turbine diagnostics: a review [ J ]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216 (5) : 363-377.
  • 4PATRICK H P E, HA D. Exhaust gas temperature capabili- ties now in system 1 software [ J ]. Product Update, 2005, 25(1): 88-89.
  • 5LIU X, JEFFRIES J B, HANSON R K, et al. Development of a tunable diode laser sensor for measurements of gas tur- bine exhaust temperature [ J]. Applied Physics B, 2006, 82 (3) : 469-478.
  • 6MUTHURAMAN S, TWIDDLE J, SINGH M, et al. Condi- tion monitoring of SSE gas turbines using artificial neural net- works [ J ]. Insight-Non-Destructive Testing and Condition Monitoring, 2012, 54(8): 436-439.
  • 7DUNN J. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [ J ]. Jour- nal of Cybernetics, 1973, 8(3) : 32-57.
  • 8BEZDEK J C. Pattern recognition with fuzzy objective func- tion algorithms [ M]. New York: Plenum Press, 1981: 62- 78.
  • 9YANG Y, HUANG S. Image segmentation by fuzzy C- means clustering algorithm with a novel penalty term [ J ]. Computing and Informatics, 2007, 26: 17-31.
  • 10PAL N R, BEZDEK J C. On cluster validity for the fuzzy C- means model [ J ]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部