期刊文献+

神经电极-脑组织界面微动环境力学特性仿真 被引量:5

Mechanical simulation of neural electrode-brain tissue interface under different micro-motion conditions
下载PDF
导出
摘要 为了解决电极的长期寿命问题,采用有限元方法对电极-脑组织界面的微动进行静态分析和瞬态分析,基于商用电极A1x16-3-100-413进行建模,研究微动频率f和电极界面黏附状态对电极-脑组织界面力学状态的影响.结果表明,f对等效应力σ最大值有显著影响,高频率比低频率更不利于电极的长期稳定性,且存在临界值;f在20Hz左右时σ接近最大值,超过20Hz后f的影响减小;电极与脑组织之间的物理耦合度对界面力学状态有较大影响,增强电极和脑组织的黏附程度,可以有效减小微电极尖端和神经组织间的应力、应变以及分层,从而提高电极使用寿命. In order to improve the long-term stability simulation had been used for the static analysis and tr of the brain anslent ana motion's frequency and friction state on the mechanical state of ly th implanted electrode, the finite-element sis. In particular, the effects of micro- e probe-brain tissue interface had been investigated based on the commercial electrode, A1x16-3-100-413. The results demonstrate that micro- motion frequency has a great effect on the maximal Vort Mises stress observed on the model, indicating that higher frequencies are more harmful than lower frequencies in terms of long-term stability of the electrode. And there exists a critical value: when the value of frequency is 20 Hz, the stress is nearly to the maximum, followed by the decreased influence of frequency. The results also show that physical coupling degree between the electrode and the brain tissue has a significant influence on the interface mechanical state. Enhancing the attachment between the electrode and the brain can effectively decrease the stress, strain and delamination of the microelectrode tip with respect to the adjacent neural tissue, thus improve the working life of implanted electrode.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第2期256-260,307,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金项目资助项目(51175334) 上海交通大学医工(理)交叉基金资助项目(YG2010MS89) 机械系统与振动国家重点实验室自主课题(MSVZD201110)
关键词 微电极 有限元法 微动 物理耦合度 microelectrode finite element method micro-motion degree of physical coupling.
  • 相关文献

参考文献18

  • 1BIRAN R, MARTIN D C, TRESCO P A. The brain tissue response to implanted silicon microelectrode ar- rays is increased when the device is tethered to the skull [J]. Journal of Biomedical Materials Research Part A, 2007, 82A(1): 169 - 178.
  • 2QUA Xiang-hua, QIONG Wua, ZHANG Kun yang, et al. In vivo studies of poly (3-hydroxybutyrate-co 3 hydroxyhexanoate) based polymers= Biodegradation and tissue reactions[J]. Biomaterials, 2006, 27(19): 3540 - 3548.
  • 3MCCONNELL G C, REES H D, LEVEY A 1, et al. Implanted neural electrodes cause chronic, local inflam marion that is correlated with local neurodegeneration[J]. Journal of Neural Engineering, 2009, 6(5): 12.
  • 4CHEUNG K. Implantable mieroscale neural interfaces [J]. Biomedical Mierodevices, 2007, 9(6): 923-938.
  • 5EYMOUR J P, KIPKE D R. Neural probe design for duced tissue encapsulation in CNS [J]. Biomaterials,2007, 28(25) : 3594 - 3607.
  • 6MCCONNELL G C, SCHNEIDER T M, OWENS DJ, et al. Extraction force and cortical tissue reaction of sili con microelectrode arrays implanted in the rat brain [J]. Biomedical Engineering, IEEE Transactions on, 2007, 54 (6) : 1097 - 1107.
  • 7PATIL P G, TURNER D A. The development of brain machine interface neuroprosthetic devices [J]. Neuro- therapeutics, 2008, 5(1): 137- 146.
  • 8MOXON K A, HALl.MAN S, SUNDARAKRISH NAN A, et al. Long-term recordings of multiple, sin- gle-neurons for clinical applications: the emerging role of the bioactive microelectrode [J]. Materials, 2009, 2 (4) : 1762 - 1794.
  • 9AARON G, JIT M. Brain micromotion around implants in the rodent somatosensory cortex [J]. Journal of Neu- ral Engineering, 2006, 3(3) : 189.
  • 10VAHASOYRINKI M, TUUKKANEN T, SORVOJA H, et al. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution[J]. Journal of Neuroscience Methods, 2009. 180(2): 290- 295.

同被引文献23

  • 1W J Streit, et al. Electrode failure : tissue, electrical, and materialresponses[ J]. Pulse, IEEE, 2012,3(1):30-33.
  • 2E Fem6ndez, et al. Acute human brain responses to intracorticalmicroelectrode arrays: challenges and future prospects [ J ]. Fron-tiers in neuroengineering, 2014-7.
  • 3M Polanco, H Yoon, S Bawab. Micromotion - induced dynamiceffects from a neuron probe and brain tissue interface [ C ]. SPIESmart Structures and Materials + Nondestructive Evaluation andHealth Monitoring. International Society for Optics and Photonics,2013:869109-869109-15.
  • 4J R Capadona, et al. Mechanically adaptive nanocomposites forneural interfacing[J]. MRS bulletin, 2012,37(06) :581-589.
  • 5F Wu, M Im, E Yoon. A flexible fish - bone - shaped neural probestrengthened by biodegradable silk coating for enhanced biocompat-ibility [C ]. Solid-State Sensors, Actuators and Microsystems Con-ference (TRANSDUCERS ) , 2011 16th International. IEEE,2011:966-969.
  • 6D H Szarowski, et al. Brain responses to micro - machined silicondevices[ J] . Brain research, 2003,983 (1 ) ; 23-35.
  • 7C S Bjomsson,et al. Effects of insertion conditions on tissue strainand vascular damage during neuroprosthetic device insertion [ J].Journal of neural engineering, 2006,3(3) :196.
  • 8M Welkenhuysen, et al. Effect of insertion speed on tissue re-sponse and insertion mechanics of a chronically implanted silicon-based neural probe [ J ] . Biomedical Engineering, IEEE Transac-tions on, 2011,58(11) :3250-3259.
  • 9JAW Van Dommelen, et al. Mechanical properties of brain tis-sue by indentation ; interregional variation[ J]. Journal of the Me-chanical Behavior of Biomedical Materials,2010,3(2): 158 -166.
  • 10B Rashid, M Destrade, M D Gilchrist. Hyperelastic and Viscoe-lastic Properties of Brain Tissue in Tension [ C] . ASME 2012 In-ternational Mechanical Engineering Congress and Exposition. A-merican Society of Mechanical Engineers, 2012 :921 -929.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部