期刊文献+

镁在水蒸气中着火特性和模型分析 被引量:1

Experimental and model study on ignition of magnesium in steam
下载PDF
导出
摘要 为研究镁在水蒸气中着火特性,采用可视化密闭燃烧器对镁颗粒进行加热后,观测到颗粒表面重复着氧化层沉积、破碎并剥落的过程,表面光泽明暗交替,直至发生着火.在高温管式炉上,研究加热速率、水蒸气质量分数和粒径对镁颗粒着火温度和着火延迟时间的影响规律.镁在水蒸气中着火前的反应主要是镁蒸发控制的均相反应,表面反应可以忽略.计算得到水蒸气中镁着火的活化能为150kJ/mol.建立常压下水蒸气中镁颗粒着火的能量方程,采用突变理论中的尖点突变模型分析水蒸气中镁的着火动力学过程,计算不同粒径的镁颗粒在静止水蒸气环境中的着火温度和着火延迟时间.结果表明,对于粒径小于50μm的镁颗粒,着火延迟时间不超过20ms. The ignition characteristics of magnesium particles in steam were studied. A magnesium particle was heated in a visualizing enclosed burner and the ignition process was observed. Depositing, breaking and peeling of the oxide cap happen repeatedly on the particle surface, and the surface becomes bright and dark alternately until the particle is ignited. The effects of heating rate, steam concentration and particle diameter on ignition temperature and ignition delay time of magnesium in steam were studied by using a tube reactor. The ignition of magnesium in steam is controlled by the homogeneous reaction and the heterogeneous reaction can be ignored. The energy equation of the magnesium ignition in steam on normal pressure was set up. The activity energy of ignition in steam was calculated and the value of 150 kJ/mol was gained. The ignition kinetics was analyzed by the catastrophic model. Ignition temperature and ignition time of magnesium particles with different diameter in stationary steam were predicted. The ignition delay time is less than 20 ms for the magnesium particles which are smaller than 50 μm.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第2期267-272,共6页 Journal of Zhejiang University:Engineering Science
关键词 水蒸气 着火 突变理论 magnesium steam ignition catastrophic theory
  • 相关文献

参考文献14

  • 1李芳,张为华,张炜,夏智勋.水反应金属燃料能量特性分析[J].固体火箭技术,2005,28(4):256-259. 被引量:19
  • 2李是良,张炜,张为华,阳世清,朱慧,何博.镁基水反应金属燃料及水冲压发动机初步试验[J].国防科技大学学报,2007,29(1):35-38. 被引量:15
  • 3MILLER T F, HERR J D. Green rocket propulsion by . reaction of al and Mg powders and water[C]// 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale. Florida: American Institu- te of Aeronautics and Astronautics, 2004.
  • 4STEINFELD A, KUHN P, RELLER A, et al. Solar- processed metals as clean energy carriers and water- splitters [J]. International Journal of Hydrogen Energy, 1998, 23: 767-774.
  • 5GAVEZ M E, FREI A, ALBISETTI G, et al. Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions-Thermody- namic and kinetic analyses [J]. International Journal of Hydrogen Energy, 2008; 33: 2880- 2890.
  • 6ROBERTS T A, BURTON R L, KRIER H. Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures[J]. Combustion and Flame, 1993, 92:125-143.
  • 7BOIKO V M, LOTOV V V, PAPYRIN A N. Ignition of gas suspensions of metallic powders in reflected shock waves [J]. Combustion, Explosion, and Shock Waves, 1989, 25, (2): 193-199.
  • 8PETUKHOVA E V, FEDOROV A V. Ignition of mag nesium particles near the end of a shock tube [J]. Com- bustion, Explosion, and Shock Waves, 1991, 27 (6) : 778 - 780.
  • 9BRANSFORD J W. Laser-initiated combustion studies on metallic alloys in pressureized oxygen [R]. In NBSIR 84-3013, Washington D C: National Bureau of Stand- ards, 1984.
  • 10TAKENO T, YUASA S. Ignition of magnesium and magnesium-aluminum alloy by impinging hot-air stream [J]. Combustion Science and Technology, 1980, 21: 109 - 121.

二级参考文献11

  • 1李芳,张为华,张炜,阳世清,夏智勋.铝基水反应金属燃料性能初步研究[J].国防科技大学学报,2005,27(4):4-7. 被引量:26
  • 2Kuehl D K. Ignition and combustion of aluminum and beryllium[J]. AIAA J. 1965, 3(12).
  • 3Kiely D H. Review of underwater thermal propulsion [ C ].Joint Propulsion Conference July 1-3,1966, Lake Buena Vista,FL.
  • 4Brooks Y,et al. Dynamics of aluminum combustion [ J ]. Journal of Propulsion and Power,1995,11 (4).
  • 5Greiner L. Selection of high-performance propellants for torpedoes[ J]. ARS J. 1960,30:1161-1163.
  • 6Catoire L, et al. Kinetic model for aluminum-sensitized ram accelerator combustion[ J ]. Journal of Propulsion and Power,2003,19(2) :196-202.
  • 7李是良.镁基水反应金属燃料性能研究[D].长沙:国防科技大学,2004.
  • 8Foote J P,et al.Investigation of Aluminum Particle Combustion for Underwater Propulsion[C]//32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference,AIAA 96-3086,1996.
  • 9Stinebring D R,et al.High-speed Supercavitating Vehicles[C]//Applied Research Laboratory Review 2000,31-38,2001.
  • 10Miller T F,et al.A Next-generation AUV Energy System Based on Aluminum-seawater Combustion[C]//AIAA 02-3788,2002.

共引文献30

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部