期刊文献+

微小内螺纹管冷凝实验结果及关联式评价 被引量:3

Experimental Result of condensation in micro-fin tubes of different geometries
下载PDF
导出
摘要 为了研究不同顶角的内螺纹管单相及冷凝的压降及换热性质,对具有相同外径(5mm)、相同螺旋角(18°)的内螺纹管进行实验,使用制冷剂为R22和R410A,质量流速为200~650kg/(m2.s),饱和温度为320K,进出口干度分别为0.8和0.1.结果表明,内部实际换热面积增加比Aai/Afr是和强化换热系数直接正相关的.其中R22为工质的1#管和R410A为工质的7#管具有相对高的换热系数和相对低的压降.且在计算压降时,应用了Churchill模型[27]得出的摩擦系数及一个合适的相对粗糙度来修正光管的压降关联式.对Kedzierski和Goncalves关联式[11]进行修正,用基于齿根直径的换热面积代替实际内部换热面积,使误差在20%以内. An experimental investigation was performed with R22 and R410A for single-phase flow and condensation inside seven micro-fin tubes with the same outer diameter 5 mm and helix angle 18° to obtain pressure drop and heat transfer coefficient characteristics of tubes with different apex angle a. Data are for mass fluxes at 200-650 kg/(m^2 · s). The nominal saturation temperature is 320 K, with inlet and outlet qualities of 0.8 and 0. 1, respectively. The results suggest a positive correlation between surface heattransfer area ratio and heat exchange enhancement ratio. When R22 is used, Tube 1 has the relatively high heat transfer coefficient and relatively low pressure drop, the same as tube 7 when R410A is used. In addition, Pressure drop correlations for plain tubes were applied to micro-fin tubes by using a friction factor calculated by the Churchill model and a suitable relative roughness. The Kedzierski and Goncalves correlationE10 has been modified to be based on the nominal heat transfer area adopting the fin root diameter instead of the actual inner surface heat transfer area, which can predict all data points within a ±20% error band.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第2期293-299,共7页 Journal of Zhejiang University:Engineering Science
基金 国家"十一五"科技支撑计划资助项目(2012BAA10B01) 国家自然科学基金资助项目(51210011)
关键词 内螺纹管 冷凝 压降 换热 Micro-fin tube condensation pressure drop heat transfer
  • 相关文献

参考文献30

  • 1黄理浩,陶乐仁,郑志皋,等.R410A在管内冷凝换热及压降的实验研究[J].制冷技术,2011,39(4):31-34.
  • 2张建国,陶乐仁,王伟,杨志强,王永红.R22和R410A在水平微肋管内冷凝性能的实验研究[J].制冷与空调(四川),2010,24(2):10-13. 被引量:4
  • 3THOME J R. Engineering Data Book Ⅲ [M]. Lau sanne.. Wolverine Tube, Inc., 2004:567-603.
  • 4YANG C Y. A critical review of condensation heat transfer predicting models-effect of surface-tension force [J]. Journal of Enhanced Heat Transfer, 1999, 6(2/4) :217- 236.
  • 5CAVALI.INI A, DEL COL D, DORETTI L, et al, Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes [J]. Inter- national Journal of Refrigeration, 2000, 1 (23) : 4 - 25.
  • 6WEBB R L, KIM N H. Principles of Enhanced Heat Transfer [M]. 2nd ed. New York: Taylor & Francis Group, 2004: 234-243.
  • 7SCHLAGER L M, PATE M B, BERGLES A E. Evap- oration and condensation heat transfer and pressure drop in horizontal 12. 7-mm microfin tubeswith refrigerant 22 [J]. Journal of Heat Transfer, 1990, 112(4) : 1041 - 1047.
  • 8WU X M, WANG X L, WANG W C. Condensation heat transfer and pressure drop of R22 in 5-mm diameter microfin tubes [J]. Journal of Enhanced Heat Transfer, 2004,11: 275-282.
  • 9CAVALLINI A, BELLA B, LONGO G A, et al, Ex- perimental heat transfer coefficients during condensation of halogenated refrigerants on enhanced tubes [J]. Jour- nal of Enhanced Heat Transfer, 1995, (2) : 115 - 125.
  • 10CHOI J Y, KEDZIERSKI M A, DOMANSKI P A,Generalized pressure drop correlation for evaporation and condensation in smooth and micro-fin tubes [C]// Proceedings of IIF-IIR Commission. B1: Paderborn, Germany: B4, 2001: 9-16.

二级参考文献7

共引文献3

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部