期刊文献+

梯度反褶积法及其在矿产勘探中的应用 被引量:6

Gradient Deconvolution Method and Its Application in Mineral Exploration
下载PDF
导出
摘要 梯度探测技术以其信息量大、精度高、干扰小等优点在地球物理领域中得到广泛应用,但现今针对梯度数据的反演方法还比较少。笔者提出一种新的梯度数据解释方法——梯度反褶积法,该方法以梯度数据为基础获得场源体的位置信息,在计算公式中消除了构造指数,避免了因构造指数选取不当引起的误差。通过理论模型试验证明,梯度反褶积法能有效地完成目标体的反演工作,反演结果与理论值之间的误差小于5%,且相对于常规欧拉反褶积法更加稳定、准确。将梯度反褶积法应用于实测航磁梯度异常的解释,获得了地下铁矿的分布状态。 Gradient detection technology is widely used in the geophysical measurement for its great capacity, high precision and low noise level et al, but there are few methods for interpreting gradient data now. The authors presented a new gradient interpretation method here, called gradient deconvolution method. The new method can obtain the locations of the causative sources with gradient data, and eliminate structural index from the calculation equation and thus avoids the errors produced by improper structural index selection. We tested the gradient deconvolution method with synthetic potential data. The inversion results show that the misfit between the theory and inversion result is less than 5%, and the inversion results are more stable and correct compared to the conventional Euler deconvolution method. At last, we applied the gradient Euler deconvolution method to measured aeromagnetic gradient data, and obtained the distribution of underground iron mine.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2013年第1期259-266,共8页 Journal of Jilin University:Earth Science Edition
基金 中国地质调查局项目(GZH003-07-03) 国家科技支撑计划项目(2009BAB43B00)
关键词 梯度探测 反褶积 构造指数 勘探 gradient detection deconvolution structural index exploration
  • 相关文献

参考文献10

  • 1马国庆,孟令顺,李丽丽.龙门山及邻区断裂分布及地震前后断裂形态差异[J].吉林大学学报(地球科学版),2012,42(2):519-525. 被引量:5
  • 2李丽丽,杜晓娟,马国庆.改进的局部波数法及其在磁场数据解释中的应用[J].吉林大学学报(地球科学版),2012,42(4):1179-1185. 被引量:3
  • 3Huang D, Gubbins D, Clark R A, et al. Combined Study of Euler's Homogeneity Equation for Gravity and Magnetic Field [C]//57th EAGE Coni'erence. Glasgow: European Association ot- Geoseientists and Engineers. 1995:144.
  • 4Salem A, Ravat D, Mushayandebvu M F, et al. Linear ized I.east Squares Method for Interpretation of Poten tial-Field Data from Sources of Simple Geometry[J] Geophysics, 2004, 69(3): 783-788.
  • 5Schimidt P W, Clark A. The Magnetic Gradient Ten- sor: Its Properties and Uses in Source Characterization [J]. The Leading Edge, 2006, 25(1): 75-78.
  • 6Barbosa V C F, Silva J B C, Medeiros W E. Stability Analysis and Improvement of Structural Index E'stima- tion in Euler Deconvolution[J]. Geophysics, 1999, 64 (1) :48 - 60.
  • 7Daniela G, Mareos J, Arauzo B. Automatic Interpre- tation of Magnetic Data Based on Euler Deconvolulion with Unprescribed Structural Index[J]. Computers & Geosciences, 2003, 29(8) : 949 - 960.
  • 8Hansen R O, Laura S. Multiple-Source Euler Decon- volution[J]. Geophysics, 2002, 67(2): 525-535.
  • 9Thompson D T. 'EULDPH': A New Technique for Making Computer-Assisted Depth Estimates from Magnetic Data[J]. Geophysics, 1982, 47(1) :31-37.
  • 10Reid A B, Allsop J M, Granser H, et al. Magnetic Interpretation in Three Dimensions Using Euler De- convolution[J]. Geophysics, 1990, 55(1): 80-91.

二级参考文献26

  • 1陈欢欢,李星,丁文秀.Surfer 8.0等值线绘制中的十二种插值方法[J].工程地球物理学报,2007,4(1):52-57. 被引量:179
  • 2Hartman R R, Teskey D J, Friedberg J L. A System for Rapid Digital Aeromagnetic Interpretation[J]. Geo physics, 1971, 36: 891-918.
  • 3Nabighian M N. The Analytic Signal of Two Dimen sional Magnetic Bodies with Polygonal Cross Section Its Properties and Use for Automated Anomaly Inter pretation[J]. Geophysics, 1972, 37:507 - 517.
  • 4Thompson D T. "EULDPH": A New Technique for Making Computer-Assisted Depth Estimates from Magnetic Data[J]. Geophysics, 1982, 47: 31 - 37.
  • 5Reid A B, Allsop J M, Granser H, et al. Magnetic In- terpretation in Three Dimensions Using Euler Decon volution[J]. Geophysics, 1990, 55: 80- 91.
  • 6Abdelrahman E M. Discussion on "A Least-Squares Approach to Depth Determination from Gravity Data" by O P Gupta[J]. Geophysics, 1990, 55: 376 -378.
  • 7Salem A, Ravat D, Mushayandebvu M F, et al. IAne- arized Least-Squares Method for Interpretation of Po tential Field Data from Sources of Simple Geometry [J]. Geophysics, 2004, 69: 783-788.
  • 8Thurston J B, Smith R S. Automatic Conversion of Magnetic Data to Depth, Dip, and Susceptibility Con- trast Using the SPI Method[J]. Geophysics, 1997, 62:807 - 813.
  • 9Elawadi E, Salem A, Ushijima K. Detection of Cavi- ties from Gravity Data Using A Neural Network[J]. Exploration Geophysics, 2001, 32: 75- 79.
  • 10Thurston J B, Smith R S, Guillon J. A Multi-Model Method for Depth Estimation from Magnetic Data[J]. Geophysics, 2002, 67: 555-561.

共引文献6

同被引文献59

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部