期刊文献+

人(Homo sapiens)海马神经元microRNA调控网络的构建及其基本性质研究 被引量:1

Construction and Studies of microRNA Regulatory Networks in Homo Sapiens Hippocampal Neuron
原文传递
导出
摘要 目的:建立人海马神经元中的分子相互作用调控网络,研究miRNA在这个网络中是如何与其他信号通路相互作用并形成更复杂的生物网络,以及miRNA对网络中其靶点的调控如何影响生物网络的性质。方法:通过对已发表文献实验数据的挖掘分析,获得了哺乳动物海马神经元中主要信号通路的580个组分的一组相互作用数据,以及海马神经元中的miRNA表达谱。使用PITA,Miranda,TargetScan三个miRNA靶点预测软件计算出了这580个组分中的345个miRNA靶点。使用cytoscape对这些相互作用数据建立网络并对其性质进行计算分析。结果:建成了海马神经元中一个包含633个节点1653条边的miRNA调控网络,该网络中转录因子,adapter,酶更多的受到miRNA调控。结论:人海马神经元中,miRNA主要通过对转录因子,adapter和酶进行调控,与其他信号通路相互作用形成了一个更加复杂的网络,新形成的网络的集群系数,网络异质性,网络中心化程度,平均最短路径长度,平均邻点数都发生了变化。 Objective: To comnstruct a regulatory network of molecular interaction in human hippocampal neuron and to investigate the effect of miRNA on the network by interacting with other molecules and pathways and finally format a more complex network. Methods: A group of molecular interaction data in human hippocampal neuron that contain 580 components and 1340 interactions, and the miRNA expression profile in human hippocampal neuron were obtained by mining data in published articles. Using miRNA targets predicted by PITA, Miranda and TargetScan, 345 miRNA targets in these 580 components were obtained. Cytoscape was used to construct and analyze network from these interaction data. Results: A miRNA regulatory network contains 633 nodes and 1653 edges in human hippocampal neuron were constructed. Compared with the network without miRNA regulation, more transcription factors, adapters and enzymes were involved in the miRNA mediated network. Conclusion: In human hippocampal neuron, most targets of miRNA are transcription factors, adapters and enzymes, miRNA regulates these molecules in pathways and formats a more complex network with different topological properties.
出处 《现代生物医学进展》 CAS 2013年第2期201-204,共4页 Progress in Modern Biomedicine
基金 国家自然科学基金加项目(30911120492)
关键词 海马神经元 MICRORNA 调控网络 cytoscape Hippocampal neuron microRNA Regulatory networks Cytoscape
  • 相关文献

参考文献20

  • 1Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and func- tion [J].Cell, 2004,116(2):281-297.
  • 2Eulalio A, Rehwinkel J, Stricker M, et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing [J]. Genes Dev, 2007,21:2558-2570.
  • 3Nakahara K, Carthew RW. Expending roles for miRNA and siRNA in cell regulation[J]. Curr Opin Cell Biol, 2004,16(2): 127 - 133.
  • 4Chen CZ, Li L, Lodish HF, et al. MicroRNA modulate hematopoietic lineage differentiation[J]. Science, 2004,303(5654):83-86.
  • 5Friedman RC, Farh KK, Burge CB. Most Mammalian mRNAs Are Conserved Targets of MicroRNAs [J]. Genome Research, 2009, 19: 92-105.
  • 6Ma'ayan A, Jenkins SL, Neves SI Formation of regulatory patterns dur- ing signal propagation in a mammalian cellular network [J]. Science, 2005, 309:1078-1083.
  • 7Cogswell J, Ward J, Taylor I, et al. Identification of miRNA Changes in Alzheimer's Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways [J]. Journal of Alzheimer's Dis- ease, 2008,14:27-41.
  • 8Kertesz M, Iovino N, Unnerstall U, et al. The role of site accessibility in microRNA target recognition [J]. Nature Genetics, 2007, 39: 1278-1284.
  • 9Betel D, Koppal A, Agius P, et al. Comprehensive modeling of mi- croRNA targets predicts functional non-conserved and non-canonical sites[J]. Genome Biology, 2010,11 :R90.
  • 10Lewis BP, Burge BC, Bartel DP. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets[J]. Cell, 2005,120; 15 -20.

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部