摘要
Ammonia is highly volatile and will present substantial environmental and operation hazards when leaking into the air. However, ammonia is the most common reactant in the DENOX project to eliminate NOx in the flue gas. The storage and transportation of liquid ammonia has always been a dilemma of the power plant. Urea is a perfect substitute source for ammonia in the plant. Urea hydrolysis technology can easily convert urea into ammonia with low expense. Presently, there is still no self-depended mature urea hydrolysis technology for the DENOX project in China; therefore, this paper proposes several guidelines to design the urea hydrolyser by theoretical analysis. Based on theoretical analysis, a simulation model is built to simulate the chemical reaction in the urea hydrolyser and is validated by the operational data of the commercial hydrolyser revealed in the literature. This paper endeavors to propose suggestions and guidelines to develop domestically urea hydrolysers in China.
Ammonia is highly volatile and will present substantial environmental and operation hazards when leaking into the air. However, ammonia is the most common reactant in the DENOX project to eliminate NOx in the flue gas. The storage and transportation of liquid ammonia has always been a dilemma of the power plant. Urea is a perfect substitute source for ammonia in the plant. Urea hydrolysis technology can easily convert urea into ammonia with low expense. Presently, there is still no self-depended mature urea hydrolysis technology for the DENOX project in China; therefore, this paper proposes several guidelines to design the urea hydrolyser by theoretical analysis. Based on theoretical analysis, a simulation model is built to simulate the chemical reaction in the urea hydrolyser and is validated by the operational data of the commercial hydrolyser revealed in the literature. This paper endeavors to propose suggestions and guidelines to develop domestically urea hydrolysers in China.