期刊文献+

基于边缘检测小波变换的红外与可见光图像融合方法 被引量:6

An improved image fusion algorithm based on wavelet of edge detection
下载PDF
导出
摘要 简要地论述了图像融合中主要的三种像素级融合算法,即简单方法、基于塔形分解以及基于小波分解的融合方法,在现有的红外与可见光图像融合方法之上,提出了以边缘检测为基础的一种小波变换图像融合方法,并对融合效果进行了评价。实验结果表明,经该方法对红外与可见光图像的融合可以提供更多、更有效的信息,提高了图像的分辨效果和人眼对场景目标的发现和识别概率,融合效果较为理想。 The theory of pixel level image fusion method based on simple method, pyramid decomposition and wavelet decomposition is described in this paper. In addition, based on the existing infrared and visible image fusion method, an improved image fusion algorithm based on wavelet of edge detection has been presented. The fusion effect was evaluated. The experimental result shows that the infrared and visible image fusion with this method can provide more effective information to improve the image resolution effect and the detecting and recognition probability of the human eye to scenes of target. The fusion results are ideal.
出处 《光学仪器》 2013年第1期18-21,29,共5页 Optical Instruments
关键词 可见光图像 红外图像 图像融合 边缘检测 visible image infrared image image fusion edge detection
  • 相关文献

参考文献5

二级参考文献22

  • 1刘贵喜,赵曙光,陈文锦.红外与可见光图像融合的多分辨率方法[J].光电子.激光,2004,15(8):980-984. 被引量:24
  • 2刘斌,彭嘉雄.基于区域的小波多尺度多聚焦图像融合方法[J].量子电子学报,2005,22(2):159-164. 被引量:8
  • 3李晖晖,郭雷,刘航.基于区域分割的遥感图像融合方法[J].光子学报,2005,34(12):1901-1905. 被引量:25
  • 4狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006,35(5):766-771. 被引量:65
  • 5[1]Luo R C, Kay M G. Multisensor Integration And Fusion For Intelligent Machines And Systems. New Jersey: Ablex Publishing Corporation, 1995. 1~25
  • 6[2]Varshney P K. Multisensor data fusion. Electronics & Communication Engineering Journal, 1997,9(6):245~253
  • 7[3]Yocky D A. Image merging and data fusion by means of the discrete two-dimensional wavelet transform. Journal of Optical Society of America, 1995, 12(9):1834~1841
  • 8[4]Nunez J, Otazu X, Fors O, Prades A, Pala V, Arbiol R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(3):1204~1211
  • 9[5]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):674~693
  • 10[6]Mallat S G. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998.302~310

共引文献159

同被引文献311

  • 1陈艳菲,桑农,王洪伟,但志平.基于视觉注意的可见光与红外图像融合算法[J].华中科技大学学报(自然科学版),2013,41(S1):112-115. 被引量:5
  • 2程英蕾,赵荣椿,李卫华,王兵,江泽涛.基于像素级的图像融合方法研究[J].计算机应用研究,2004,21(5):169-172. 被引量:14
  • 3常家东.加工中心对刀仪器研制[J].机床与液压,2005,33(8):32-33. 被引量:3
  • 4刘力双,王宝光,张铫,卢慧卿,孙双花.刀具预调测量仪系统的研究[J].制造技术与机床,2005(10):67-69. 被引量:5
  • 5刘建伟,郭平.一种基于边缘检测的图像融合新方法[J].北京师范大学学报(自然科学版),2007,43(5):518-521. 被引量:4
  • 6Sumeet Dua, U.Rajendra Acharya, Pradeep Chowriappa, et al. Wavelet- based energy features for g|aucomatous image classification[J]. IEEE Transactions on Information Technology in Biomedicine-TITB, 2012, 16(1): 80-87.
  • 7NannanYu, TianshuangQiu, FengBi, et al. Image features extraction and fusion based on joint sparse representation[J]. IEEE Journal of Selected Topics in Signal Processing, 2011(5): 1074-1082.
  • 8YANG B, LI S. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measure- ment, 2010, 59(4): 884-892.
  • 9Li Shu-tao, Yang Bin, Hu Jian-wen. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2): 74-84.
  • 10Li Shutao, Yin Haitao, Fang Leyuan. Remote sensing image fusion via sparse representations over learned dictionaries[J]. IEEE T Geoscience andRemote Sensing, 2013, 51(9): 4779-4789.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部