期刊文献+

多跨系杆拱桥极限承载力影响因素 被引量:2

Influencing factors for ultimate bearing capacity of multi-span tied arch bridge
下载PDF
导出
摘要 为求得多跨系杆拱桥的稳定系数和安全储备,建立了多跨系杆拱桥的空间有限元模型.通过特征值屈曲分析,得到了成桥状态各工况的稳定系数,并分析了横撑刚度和数量对稳定系数的影响.考虑材料非线性和几何非线性的极限承载力分析,得到了成桥状态的活载稳定系数和恒载稳定系数,并分析了风荷载、温度作用、荷载布置和初始缺陷对稳定系数的影响.分析结果表明,特征值屈曲分析可以提供结构极限承载力的合理估计,横撑刚度对结构稳定系数的影响较横撑数量的影响要大;极限承载力分析过程中主拱四分点部位和跨中部位首先进入塑性状态,静风荷载对结构稳定系数的影响较温度作用和初始缺陷的影响要大. In order to obtain the stability coefficient and safety stock of multi-span tied arch bridge, a spatial finite element model for multi-span tied arch bridge was established. Through the buckling analysis on eigenvalue, the stability coefficients of the completed bridge state under various operating conditions were attained. In addition, the influence of bracing stiffness and bracing number on the stability coefficient was analyzed. Through the ultimate bearing capacity analysis with considering both material nonlinearity and geometric nonlinearity, the dead load and live load stability coefficients for completed bridge state were obtained. Moreover, the effect of wind load, temperature action, load arrangement and initial defect on the stability coefficient was analyzed. The analysis results show that the buckling analysis on eigenvalue can provide reasonable estimation for the structural ultimate capacity, and the bracing stiffness has a greater influence on the structural stability coefficient compared with the bracing number. In the analysis process of ultimate bearing capacity, the quarter points and mid-span of main arch firstly reach the plastic state. Furthermore, the static wind load has a greater effect on the structural stability coefficient compared with the temperature action and initial defect.
出处 《沈阳工业大学学报》 EI CAS 北大核心 2013年第1期109-114,共6页 Journal of Shenyang University of Technology
基金 国家科技支撑计划资助项目(2009BAG15B02) 浙江省科技计划资助项目(2009C11102)
关键词 系杆拱桥 极限承载力 屈曲分析 非线性 组合梁 横撑刚度 tied arch bridge ultimate bearing capacity buckling analysis nonlinearity composite girder bracing stiffness
  • 相关文献

参考文献9

二级参考文献44

  • 1邱文亮,姜萌,张哲.钢-混凝土组合梁收缩徐变分析的有限元方法[J].工程力学,2004,21(4):162-166. 被引量:32
  • 2谢旭,李辉,黄剑源.大跨度两铰钢拱桥面内稳定分析[J].土木工程学报,2004,37(8):43-49. 被引量:21
  • 3郑凯锋,万鹏.钢拱桥极限承载力的综合三因素检算方法[J].中国铁道科学,2005,26(5):17-21. 被引量:10
  • 4宋天霞.非线性结构有限元计算[M].武汉:华中理工大学出版社,1996..
  • 5.超大跨度拱桥风荷载及抗风稳定性研究.节段模型测力风洞试验(阶段报告2)[R].同济大学土木工程防灾国家重点实验室,2001..
  • 6SADAO KOMATSU, TATSURO SAKIMOTO. Ultimate load-carrying capacity of steel arches[J]. Journal of the Structural Division, 1988, 103 (12): 2323-2336.
  • 7Tetsuya Yabuki, Sriramulu Vinnakota and Shigeru Kuranishi. Lateral load effect on load carrying capacity of steel arch bridge structures[J]. J Struct Engrg, ASCE, 1983,109 (10) : 2434-2449.
  • 8Bathe K J, Bolourchi S. Large Displacement Analysis of Three-Dimensional Beam Structures [ J ]. International Journal for Numerical Method in Engineering, 1979, 14:961-986.
  • 9Chen Z Q, Agar T J A. Geometric Nonlinear Analysis of Flexible Spatial Beam Structures[J]. Computers & structure. 1993,49(6) : 1083-1094.
  • 10陈克济.钢筋混凝土拱面内承载力非线性分析[J].桥梁建设,1983,(1):24-36.

共引文献132

同被引文献21

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部