期刊文献+

基于粒子群算法的骨性关节炎药物分子对接方法应用研究 被引量:2

Application research on osteoarthritis medicine molecular docking based on particle swarm algorithm
原文传递
导出
摘要 通过改进分子对接软件AutoDock的构象搜索算法对治疗骨性关节炎的中药分子进行对接研究.简要分析分子对接方法的基本原理,建立分子对接数学模型,介绍AutoDock半经验结合自由能评分函数;将粒子群算法与自适应局部搜索策略相结合改进了分子对接构象搜索过程;以福建中医大学提供的治疗骨性关节炎的中药分子实验数据为基础,完成了此算法与拉马克遗传算法、遗传算法以及本课题组使用的蚁群算法在最低能量值、对接精度以及对接耗时上的比较实验.实验结果验证了粒子群算法应用在对接构象搜索上的有效性. The paper is to improve the conformational search algorithm of the AutoDock which is one of the most molecular docking software, to make a docking research about the Chinese medicine molecular that treats the osteoarthritis. The paper describes the basic principles of molecular docking method, establishes the mathematical model of molecular docking, introduces the half experience combined free energy function of AutoDock, then combines the particle swarm algorithm with adaptive local search strategy to improve the optimization process. Based on the experimental data of osteoarthritis Chinese medicine molecular provided by Fujian University of Traditional Chinese Medicine, the paper compares the algorithm with the Lamarckian genetic algorithm, the genetic algorithm, and the ant colony algorithm used in the research group about the lowest energy value, the docking accuracy and doc- king time, results show that the particle swarm algorithm is effective in docking conformational search.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期28-33,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(61104041 61201397) 福建省自然科学基金资助项目(2009J01282 2012J01261)
关键词 分子对接 骨性关节炎函数 粒子群算法 自适应局部搜索 molecular docking osteoarthritis particle swarm algorithm adaptive local search
  • 相关文献

参考文献7

  • 1李宁华.中老年人群骨关节炎的流行病学特征[J].中国临床康复,2005,9(38):133-135. 被引量:196
  • 2郑春松,徐筱杰,刘献祥,叶蕻芝.精制透骨消痛颗粒防治骨性关节炎的计算机药理学[J].物理化学学报,2010,26(3):775-783. 被引量:39
  • 3Morris G M, Goodsell D S, Halliday R S, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[ J]. Journal of Computational Chemistry, 1998,19(4) : 1 639 - 1 662.
  • 4赵晓宇.药物分子对接的优化模型与算法[D].大连:大连理工大学,2010.
  • 5董强.计算机辅助骨性关节炎药物的分子分析研究[D].福州:福州大学,2011:34-38.
  • 6Namasivayam V, Gtinther R. PSO @ Autodock: a fast flexible molecular docking program based on swarm intelligence [ J ] Chem Biol Drug Des, 2007, 70:475 -484.
  • 7Fukuyama Y. Fundamentals of particle swarm techniques [ M ]. [ s. 1. ] : IEEE Power Engineering Society, 2002 : 45 - 51.

二级参考文献20

共引文献232

同被引文献19

  • 1王敏,段向军.改进的免疫遗传算法在优化问题中的应用[J].长沙大学学报,2007,21(5):83-86. 被引量:3
  • 2何大阔,王福利,贾明兴.遗传算法初始种群与操作参数的均匀设计[J].东北大学学报(自然科学版),2005,26(9):828-831. 被引量:59
  • 3李平,吴佳英,郑金华,胡宁静.一种基于实数编码的自适应多亲遗传算法[J].湖南农业大学学报(自然科学版),2006,32(1):100-102. 被引量:3
  • 4Kuntz I D,Blaney J M,Oatley S J,et al.A geometric approach to acromolecule-ligand interactions[J].Journal of Molecular Biology,1982,161(12):269-288.
  • 5Verkhivker G M,Bouzida D D K,Gehlhaar,et al.Deciphering common failures in molecular docking of ligand-protein complexes[J].Journal of Computer Aided Molecular Docking Design,2000,14(8):731-751.
  • 6Goodsell D S,Olson A J.Automated docking of substrates to protein by simulated annealing[J].Proteins,1990,8(3):195-202.
  • 7Morris G,Goodsell D,Halliday R,et al.Automated Docking using a lamarckian genetic algorithm and empirial binding free energy function[J].Comput Chem,1998,19(14):1639-1662.
  • 8Jinn-Moon Yang,Gheng-yan Kao.Flexible Ligand Docking Using a Robust Evolutionary Algorithm[J].Comp Chem,2000,21(11):988-998.
  • 9Oliver Korb,Thomas Stutzle,Thomas E Exner.PLANTS:Application of ant colony optimization to structure-based drug design[C]//Proc of the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence.Berlin,Germany:Springer Verlag,2006.
  • 10Stefan Janson,Daniel Merkle,Martin Middendorf.Molecular docking with multi-objective Particle Swarm Optimization[J].Applied Soft Computing,2008,8(1):666-675.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部