期刊文献+

“摇铃形”金复合纳米二氧化硅在细胞和组织暗场成像中的应用 被引量:2

Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo
原文传递
导出
摘要 金纳米颗粒因其具有独特的物理化学及光学性质,在生物影像、癌症诊断治疗等领域表现出极大的应用前景,但因小尺寸纳米金颗粒(<20nm)在生理体液环境中稳定性较差、体内安全剂量低、被动靶向效果不明显等问题,使其在体内成像,尤其在活体肿瘤部位成像中受到较大局限.本文针对上述问题,将13nm金颗粒生长在具有特殊核壳结构的夹心二氧化硅空腔之内,形成具有新型结构的"摇铃形"金复合纳米二氧化硅(silica nanorattles@gold nanoparticles,SN@GN),既保留金纳米颗粒的强散射特性以利于细胞和动物组织中实现暗场成像,同时二氧化硅壳层将金颗粒保护起来,提高了纳米颗粒的稳定性.细胞毒性实验表明SN@GN的细胞生物相容性良好,毒性低.动物急性毒性实验表明,SN@GN的最大耐受剂量大于200mg/kg,而GN的体内最大耐受剂量仅为4.6mg/kg,显著提高了金纳米颗粒的生物相容性.本研究为SN@GN在生物暗场影像领域的应用提供了重要的实验依据. Gold nanoparticle is a promising nanomaterial used in the field of biological imaging, cancer diagnosis and treatment. However, the research of gold nanoparticles in the dark field imaging using the light scattering characteristics is still rare and the biocompatibility has become an important problem that plagued its application. In this paper, we synthesized a novel nanostructure in which 13 nm gold nanoparticles exist in the cavity of the core-shell silica structure. This nanostructure remained gold particle dark field imaging characteristics, and improved the monodispersity and bioeompatibility of gold nanoparticles. Cytotoxicity experiments show good biocompatibility of SN@GN in vitro. Acute toxicity in mice showed that the maximum-tolerated dose of SN@GN greater than 200 mg/kg, significantly improve the biocompatibility of gold nanoparticles. This study provides an important experimental basis of SN@GN in the medical imaging application.
出处 《科学通报》 EI CAS CSCD 北大核心 2013年第7期531-536,共6页 Chinese Science Bulletin
基金 国家高技术研究发展计划(2011AA02A114) 国家自然科学基金(61178035 61171049和81171454)资助
关键词 “摇铃形”二氧化硅 金纳米颗粒 细胞毒性 暗场成像 急性毒性 silica nanorattle, gold nanoparticles, cytotoxicity, dark field imaging, acute toxicity
  • 相关文献

参考文献13

  • 1Wang C, Chen J, Talavage T, et al. Gold nanorod/Fe304 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem lnt Ed, 2009.48:2759-2763.
  • 2Li C, Wu C, Zheng J, et al. LSPR sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir, 2010, 26:9130-9135.
  • 3Wu C, Xu Q H. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir, 2009, 25:9441-9446.
  • 4Portney N G, Ozkan M. Nano-oncology: Drug delivery, imaging, and sensing. Anal Bioanal Chem, 2006, 384:620-630.
  • 5Moghimi S M, Chirico G, Zaichenko A. A special issue on nano- and micro-technologies for biological targeting, tracking, imaging and sensing. J Biomed Nanotech, 2009, 5:611-613.
  • 6Chert D, Li L L, Tang F Q, et al. Facile and scalable synthesis of tailored silica "nanorattle" structures. Adv Mater, 2009, 21:3804-3807.
  • 7Tan L, Chen D, Liu H, et al. A silica nanorattle with a mesoporous shell: An ideal nanoreactor for the preparation of tunable gold cores. Adv Mater, 2010, 22:4885-4889.
  • 8Cao C, Sim S J. Preparation of highly stable oligo(ethylene glycol) derivatives-functionalized gold nanoparticles and their application in LSPR-based detection of PSA/ACT complex. J Nanosci Nanotech, 2007, 7:3754-3757.
  • 9刘颖,陈春英.纳米材料的安全性研究及其评价[J].科学通报,2011,56(2):119-125. 被引量:33
  • 10Cho W S, Cho M, Jeong J, et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol, 2009, 236:16-24.

二级参考文献35

  • 1Renwick L C, Brown D, Clouter A, et al. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med, 2004, 61:442-447.
  • 2Wang J X, Chen C Y, Liu Y, et al. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett, 2008, 183:72-80.
  • 3Wang J X, Liu Y, Jiao F, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 2008, 254:82-90.
  • 4Warheit D B, Laurence B R, Reed K L, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci, 2004, 77:117-125.
  • 5Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA, 2006, 103:3357-3362.
  • 6Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett, 2006, 6:1121-1125.
  • 7Derfus A M, Chen A A, Min D H, et al. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem, 2007, 18:1391-1396.
  • 8Zhang C Y, Johnson L W. Homogenous rapid detection of nucleic acids using two-color quantum dots. Analyst, 2006, 131:484-488.
  • 9Williams D N, Ehrman S H, Pulliam Holoman T R. Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotech,2006, 4:3.
  • 10Warheit D B, Laurence B R, Reed K L, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci, 2004, 77:9.

共引文献32

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部